10#include "factory/factory.h"
114 case LE:
return "<=";
115 case GE:
return ">=";
124 if (
s[1]==
'\0')
return s[0];
125 else if (
s[2]!=
'\0')
return 0;
128 case '.':
if (
s[1]==
'.')
return DOTDOT;
134 case '+':
if (
s[1]==
'+')
return PLUSPLUS;
138 case '<':
if (
s[1]==
'=')
return LE;
141 case '>':
if (
s[1]==
'=')
return GE;
143 case '!':
if (
s[1]==
'=')
return NOTEQUAL;
210 memset(buffer,0,
sizeof(buffer));
220 Print(
"..., %d char(s)",
l);
243 Print(
" %d x %d (%s)",
269 ((
intvec*)(
v->Data()))->cols());
break;
427 package savePack=currPack;
434 if (
strcmp(what,
"all")==0)
467 Werror(
"%s is undefined",what);
501 package save_p=currPack;
535 WarnS(
"Gerhard, use the option command");
572 rc +=
mm->rows() *
mm->cols();
576 rc+=((
lists)
v->Data())->nr+1;
597 WerrorS(
"write: need at least two arguments");
607 Werror(
"cannot write to %s",
s);
634 Werror(
"can not map from ground field of %s to current ground field",
714 WerrorS(
"argument of a map must have a name");
771 poly
p=(poly)
tmpW.data;
788 Warn(
"possible OVERFLOW in map, max exponent is %ld",
currRing->bitmask/2);
808 theMap->preimage=(
char*)1L;
866 Print(
"//defining: %s as %d-th syzygy module\n",
s,
i+1);
871 Warn(
"cannot define %s",
s);
983 l->m[0].rtyp=u->
Typ();
984 l->m[0].data=u->
Data();
987 l->m[0].attribute=*a;
994 l->m[0].attribute=
NULL;
1032 if (weights!=
NULL)
delete weights;
1056 if (weights!=
NULL)
delete weights;
1063#define BREAK_LINE_LENGTH 80
1163 res->m[
i].data = (
void *)
save->set;
1175 res->m[
i].data = (
void *)
save->set;
1201 const char *
id =
name->name;
1206 WerrorS(
"object to declare is not a name");
1216 Werror(
"can not define `%s` in other package",
name->name);
1269 tmp.data=
at->CopyA();
1277 WerrorS(
"branchTo can only occur in a proc");
1288 short *t=(
short*)
omAlloc(
l*
sizeof(
short));
1292 for(
i=1;
i<
l;
i++,
h=
h->next)
1297 Werror(
"arg %d is not a string",
i);
1306 Werror(
"arg %d is not a type name",
i);
1313 Werror(
"last(%d.) arg.(%s) is not a proc(but %s(%d)), nesting=%d",
1326 if(
pi->data.s.body==
NULL )
1442 WerrorS(
"object with a different type exists");
1460 Warn(
"'%s': no such identifier\n",
v->
name);
1463 package frompack=v->req_packhdl;
1491 Werror(
"`%s` not found",
v->Name());
1509 Werror(
"cannot export:%s of internal type %d",
v->
name,
v->rtyp);
1535 Werror(
"cannot export:%s of internal type %d",
v->
name,
v->rtyp);
1586 WerrorS(
"no ring active (9)");
1628 WarnS(
"package not found\n");
1648 #ifndef TEST_ZN_AS_ZP
1659 r->cf->has_simple_Inverse=1;
1672 r->block0 = (
int *)
omAlloc0(3 *
sizeof(
int *));
1673 r->block1 = (
int *)
omAlloc0(3 *
sizeof(
int *));
1692 if ((r==
NULL)||(r->VarOffset==
NULL))
1731 L->
m[0].
data=(
void *)(
long)r->cf->ch;
1737 for(
i=0;
i<r->N;
i++)
1760 if (r->block1[
i]-r->block0[
i] >=0 )
1762 j=r->block1[
i]-r->block0[
i];
1765 if ((r->wvhdl!=
NULL) && (r->wvhdl[
i]!=
NULL))
1767 for(;
j>=0;
j--) (*iv)[
j]=r->wvhdl[
i][
j];
1769 else switch (r->order[
i])
1778 for(;
j>=0;
j--) (*iv)[
j]=1;
1788 LLL->
m[1].
data=(
void *)iv;
1789 LL->m[
i].data=(
void *)LLL;
1803 L->
m[3].
data=(
void *)q;
1822 L->
m[0].
data=(
void *)0;
1856 L->
m[0].
data=(
void *)0;
1899 LL->m[1].data=(
void *) C->modExponent;
1926 LL->m[1].data=(
void *)
R->cf->modExponent;
1939 WerrorS(
"ring with polynomial data must be the base ring or compatible");
1950 else if ( C->extRing!=
NULL )
1960 Lc->m[0].data=(
void*)(
long)C->m_nfCharQ;
1967 Lc->m[1].data=(
void*)
Lv;
1978 Loo->m[1].data=(
void *)iv;
1981 Lo->m[0].data=(
void*)
Loo;
1984 Lc->m[2].data=(
void*)
Lo;
1990 res->data=(
void*)
Lc;
1995 res->data=(
void *)(
long)C->ch;
2009 for(
i=0;
i<r->N;
i++)
2036 assume( r->block0[
i] == r->block1[
i] );
2037 const int s = r->block0[
i];
2043 else if (r->block1[
i]-r->block0[
i] >=0 )
2045 int bl=
j=r->block1[
i]-r->block0[
i];
2053 j+=r->wvhdl[
i][
bl+1];
2056 if ((r->wvhdl!=
NULL) && (r->wvhdl[
i]!=
NULL))
2058 for(;
j>=0;
j--) (*iv)[
j]=r->wvhdl[
i][
j+(
j>
bl)];
2060 else switch (r->order[
i])
2069 for(;
j>=0;
j--) (*iv)[
j]=1;
2079 LLL->
m[1].
data=(
void *)iv;
2080 LL->m[
i].data=(
void *)LLL;
2087 if (r->qideal==
NULL)
2118 WerrorS(
"ring with polynomial data must be the base ring or compatible");
2136 L->
m[0].
data=(
char*)r->cf; r->cf->ref++;
2151 || (r->qideal !=
NULL)
2158 WerrorS(
"ring with polynomial data must be the base ring or compatible");
2183 else if ( r->cf->extRing!=
NULL )
2193 Lc->m[0].data=(
void*)(
long)r->cf->m_nfCharQ;
2200 Lc->m[1].data=(
void*)
Lv;
2211 Loo->m[1].data=(
void *)iv;
2214 Lo->m[0].data=(
void*)
Loo;
2217 Lc->m[2].data=(
void*)
Lo;
2228 L->
m[0].
data=(
void *)(
long)r->cf->ch;
2233 L->
m[0].
data=(
void *)r->cf;
2248 WerrorS(
"invalid coeff. field description, expecting 0");
2256 WerrorS(
"invalid coeff. field description, expecting precision list");
2264 WerrorS(
"invalid coeff. field description list, expected list(`int`,`int`)");
2267 int r1=(
int)(
long)
LL->m[0].data;
2268 int r2=(
int)(
long)
LL->m[1].data;
2278 WerrorS(
"invalid coeff. field description, expecting parameter name");
2299 unsigned int modExponent = 1;
2329 modExponent = (
unsigned long)
LL->m[1].data;
2339 WerrorS(
"Wrong ground ring specification (module is 1)");
2342 if (modExponent < 1)
2344 WerrorS(
"Wrong ground ring specification (exponent smaller than 1)");
2353 else if (modExponent > 1)
2356 if ((
mpz_cmp_ui(modBase, 2) == 0) && (modExponent <= 8*
sizeof(
unsigned long)))
2367 info.exp= modExponent;
2378 info.exp= modExponent;
2391 for(
i=0;
i<
R->N-1;
i++)
2393 for(
j=
i+1;
j<
R->N;
j++)
2446 poly
p=(poly)
v->m[
i].Data();
2452 Werror(
"var name %d must be a string or a ring variable",
i+1);
2458 Werror(
"var name %d must be `string` (not %d)",
i+1,
v->m[
i].Typ());
2465 WerrorS(
"variable must be given as `list`");
2481 for (
int j=0;
j < n-1;
j++)
2488 &&(
strcmp((
char*)
vv->m[0].Data(),
"L")==0))
2497 Werror(
"illegal argument for pseudo ordering L: %d",
vv->m[1].Typ());
2504 if (bitmask!=0) n--;
2520 WerrorS(
"ordering must be list of lists");
2527 if (
strcmp((
char*)
vv->m[0].Data(),
"L")==0)
2536 Werror(
"ordering name must be a (string,intvec), not (string,%s)",
Tok2Cmdname(
vv->m[1].Typ()));
2541 if (
j_in_R==0)
R->block0[0]=1;
2564 int l=
si_max(1,(
int)(
long)
vv->m[1].Data());
2566 for(
int i=0;
i<
l;
i++) (*iv)[
i]=1;
2596 Print(
"R->block0[j_in_R]=%d,N=%d\n",
R->block0[
j_in_R],
R->N);
2656 if (((*iv)[
i]!=1)&&(
iv_len!=1))
2659 Warn(
"ignore weight %d for ord %d (%s) at pos %d\n>>%s<<",
2683 const int s = (*iv)[0];
2694 WerrorS(
"ring order not implemented");
2702 WerrorS(
"ordering name must be a (string,intvec)");
2728 Werror(
"ordering incomplete: size (%d) should be %d",
R->block1[
j_in_R],
R->N);
2734 Werror(
"not enough variables (%d) for ordering block %d, scanned so far:",
R->N,
j_in_R+1);
2764 WerrorS(
"ordering must be given as `list`");
2767 if (bitmask!=0) {
R->bitmask=bitmask;
R->wanted_maxExp=bitmask; }
2799 int ch = (
int)(
long)L->
m[0].
Data();
2809 Warn(
"%d is invalid characteristic of ground field. %d is used.", ch,
l);
2812 #ifndef TEST_ZN_AS_ZP
2823 R->cf->has_simple_Inverse=1;
2842 int ch = (
int)(
long)
LL->m[0].Data();
2852 param.GFPar_name = (
const char*)(((
lists)(
LL->m[1].Data()))->m[0].Data());
2865 WerrorS(
"could not create the specified coefficient field");
2869 if( extRing->qideal !=
NULL )
2887 WerrorS(
"coefficient field must be described by `int` or `list`");
2893 WerrorS(
"could not create coefficient field described by the input!");
2905 #ifdef HAVE_SHIFTBBA
2913 if ((bitmask!=0)&&(
R->wanted_maxExp==0))
R->wanted_maxExp=bitmask;
2926 WerrorS(
"coefficient fields must be equal if q-ideal !=0");
2963 WerrorS(
"coefficient fields must be equal if q-ideal !=0");
3008 WerrorS(
"q-ideal must be given as `ideal`");
3077 int n=(
int)(
long)
b->Data();
3085 if ((d>n) || (d<1) || (n<1))
3173 if ((fullres==
NULL) && (minres==
NULL))
3227 syzstr->fullres = fullres;
3293 res->data=(
char *)iv;
3301 for (
i = n;
i!=0;
i--)
3302 (*iv)[
i-1] =
x[
i + n + 1];
3320 res->data=(
void *)
b;
3346 spec.
mu = (
int)(
long)(
l->m[0].Data( ));
3347 spec.
pg = (
int)(
long)(
l->m[1].Data( ));
3348 spec.
n = (
int)(
long)(
l->m[2].Data( ));
3356 for(
int i=0;
i<spec.
n;
i++ )
3359 spec.
w[
i] = (*mul)[
i];
3390 for(
int i=0;
i<spec.
n;
i++ )
3394 (*mult)[
i] = spec.
w[
i];
3404 L->
m[0].
data = (
void*)(
long)spec.
mu;
3405 L->
m[1].
data = (
void*)(
long)spec.
pg;
3406 L->
m[2].
data = (
void*)(
long)spec.
n;
3457 WerrorS(
"the list is too short" );
3460 WerrorS(
"the list is too long" );
3464 WerrorS(
"first element of the list should be int" );
3467 WerrorS(
"second element of the list should be int" );
3470 WerrorS(
"third element of the list should be int" );
3473 WerrorS(
"fourth element of the list should be intvec" );
3476 WerrorS(
"fifth element of the list should be intvec" );
3479 WerrorS(
"sixth element of the list should be intvec" );
3483 WerrorS(
"first element of the list should be positive" );
3486 WerrorS(
"wrong number of numerators" );
3489 WerrorS(
"wrong number of denominators" );
3492 WerrorS(
"wrong number of multiplicities" );
3496 WerrorS(
"the Milnor number should be positive" );
3499 WerrorS(
"the geometrical genus should be nonnegative" );
3502 WerrorS(
"all numerators should be positive" );
3505 WerrorS(
"all denominators should be positive" );
3508 WerrorS(
"all multiplicities should be positive" );
3512 WerrorS(
"it is not symmetric" );
3515 WerrorS(
"it is not monotonous" );
3519 WerrorS(
"the Milnor number is wrong" );
3522 WerrorS(
"the geometrical genus is wrong" );
3526 WerrorS(
"unspecific error" );
3562 ( fast==2 ? 2 : 1 ) );
3572 ( fast==0 || (*node)->weight<=
smax ) )
3617 (*node)->nf =
search->nf;
3634 if( (*node)->weight<=(
Rational)1 ) pg++;
3635 if( (*node)->weight==
smax ) z++;
3639 node = &((*node)->next);
3690 n = ( z > 0 ? 2*n - 1 : 2*n );
3734 (*den) [
n2] = (*den)[
n1];
3735 (*mult)[
n2] = (*mult)[
n1];
3743 if( fast==0 || fast==1 )
3767 (*L)->m[0].data = (
void*)(
long)
mu;
3784 (*L)->m[0].data = (
void*)(
long)
mu;
3785 (*L)->m[1].data = (
void*)(
long)pg;
3786 (*L)->m[2].data = (
void*)(
long)n;
3787 (*L)->m[3].data = (
void*)
nom;
3788 (*L)->m[4].data = (
void*)
den;
3789 (*L)->m[5].data = (
void*)
mult;
3798 #ifdef SPECTRUM_DEBUG
3799 #ifdef SPECTRUM_PRINT
3800 #ifdef SPECTRUM_IOSTREAM
3801 cout <<
"spectrumCompute\n";
3802 if( fast==0 )
cout <<
" no optimization" << endl;
3803 if( fast==1 )
cout <<
" weight optimization" << endl;
3804 if( fast==2 )
cout <<
" symmetry optimization" << endl;
3807 if( fast==0 )
fputs(
" no optimization\n",
stdout );
3808 if( fast==1 )
fputs(
" weight optimization\n",
stdout );
3809 if( fast==2 )
fputs(
" symmetry optimization\n",
stdout );
3853 #ifdef SPECTRUM_DEBUG
3854 #ifdef SPECTRUM_PRINT
3855 #ifdef SPECTRUM_IOSTREAM
3856 cout <<
"\n computing the Jacobi ideal...\n";
3858 fputs(
"\n computing the Jacobi ideal...\n",
stdout );
3867 #ifdef SPECTRUM_DEBUG
3868 #ifdef SPECTRUM_PRINT
3869 #ifdef SPECTRUM_IOSTREAM
3883 #ifdef SPECTRUM_DEBUG
3884 #ifdef SPECTRUM_PRINT
3885 #ifdef SPECTRUM_IOSTREAM
3887 cout <<
" computing a standard basis..." << endl;
3890 fputs(
" computing a standard basis...\n",
stdout );
3898 #ifdef SPECTRUM_DEBUG
3899 #ifdef SPECTRUM_PRINT
3902 #ifdef SPECTRUM_IOSTREAM
3950 #ifdef SPECTRUM_DEBUG
3951 #ifdef SPECTRUM_PRINT
3952 #ifdef SPECTRUM_IOSTREAM
3953 cout <<
"\n computing the highest corner...\n";
3955 fputs(
"\n computing the highest corner...\n",
stdout );
3979 #ifdef SPECTRUM_DEBUG
3980 #ifdef SPECTRUM_PRINT
3981 #ifdef SPECTRUM_IOSTREAM
3994 #ifdef SPECTRUM_DEBUG
3995 #ifdef SPECTRUM_PRINT
3996 #ifdef SPECTRUM_IOSTREAM
3997 cout <<
"\n computing the newton polygon...\n";
3999 fputs(
"\n computing the newton polygon...\n",
stdout );
4006 #ifdef SPECTRUM_DEBUG
4007 #ifdef SPECTRUM_PRINT
4016 #ifdef SPECTRUM_DEBUG
4017 #ifdef SPECTRUM_PRINT
4018 #ifdef SPECTRUM_IOSTREAM
4019 cout <<
"\n computing the weight corner...\n";
4021 fputs(
"\n computing the weight corner...\n",
stdout );
4031 #ifdef SPECTRUM_DEBUG
4032 #ifdef SPECTRUM_PRINT
4033 #ifdef SPECTRUM_IOSTREAM
4046 #ifdef SPECTRUM_DEBUG
4047 #ifdef SPECTRUM_PRINT
4048 #ifdef SPECTRUM_IOSTREAM
4049 cout <<
"\n computing NF...\n" << endl;
4060 #ifdef SPECTRUM_DEBUG
4061 #ifdef SPECTRUM_PRINT
4063 #ifdef SPECTRUM_IOSTREAM
4091 WerrorS(
"polynomial is zero" );
4094 WerrorS(
"polynomial has constant term" );
4097 WerrorS(
"not a singularity" );
4100 WerrorS(
"the singularity is not isolated" );
4103 WerrorS(
"highest corner cannot be computed" );
4106 WerrorS(
"principal part is degenerate" );
4112 WerrorS(
"unknown error occurred" );
4129 WerrorS(
"only works for local orderings" );
4137 WerrorS(
"does not work in quotient rings" );
4183 WerrorS(
"only works for local orderings" );
4188 WerrorS(
"does not work in quotient rings" );
4247 else if(
l->nr > 5 )
4285 int mu = (
int)(
long)(
l->m[0].Data( ));
4286 int pg = (
int)(
long)(
l->m[1].Data( ));
4287 int n = (
int)(
long)(
l->m[2].Data( ));
4298 if( n !=
num->length( ) )
4302 else if( n !=
den->length( ) )
4326 for(
i=0;
i<n;
i++ )
4328 if( (*
num)[
i] <= 0 )
4332 if( (*
den)[
i] <= 0 )
4336 if( (*
mul)[
i] <= 0 )
4348 for(
i=0,
j=n-1;
i<=
j;
i++,
j-- )
4351 (*den)[
i] != (*den)[
j] ||
4352 (*mul)[
i] != (*mul)[
j] )
4362 for(
i=0,
j=1;
i<n/2;
i++,
j++ )
4364 if( (*
num)[
i]*(*den)[
j] >= (*num)[
j]*(*den)[
i] )
4374 for(
mu=0,
i=0;
i<n;
i++ )
4379 if(
mu != (
int)(
long)(
l->m[0].Data( )) )
4388 for( pg=0,
i=0;
i<n;
i++ )
4390 if( (*
num)[
i]<=(*den)[
i] )
4396 if( pg != (
int)(
long)(
l->m[1].Data( )) )
4425 WerrorS(
"first argument is not a spectrum:" );
4430 WerrorS(
"second argument is not a spectrum:" );
4467 WerrorS(
"first argument is not a spectrum" );
4472 WerrorS(
"second argument should be positive" );
4509 WerrorS(
"first argument is not a spectrum" );
4514 WerrorS(
"second argument is not a spectrum" );
4524 res->data = (
void*)(
long)(
s1.mult_spectrumh(
s2 ));
4526 res->data = (
void*)(
long)(
s1.mult_spectrum(
s2 ));
4557 WerrorS(
"Ground field not implemented!");
4577 LP->
m= (
int)(
long)(
v->Data());
4583 LP->
n= (
int)(
long)(
v->Data());
4589 LP->
m1= (
int)(
long)(
v->Data());
4595 LP->
m2= (
int)(
long)(
v->Data());
4601 LP->
m3= (
int)(
long)(
v->Data());
4604 Print(
"m (constraints) %d\n",LP->
m);
4605 Print(
"n (columns) %d\n",LP->
n);
4629 lres->m[4].data=(
void*)(
long)LP->
m;
4632 lres->m[5].data=(
void*)(
long)LP->
n;
4665 gls= (poly)(arg1->
Data());
4666 int howclean= (
int)(
long)arg3->
Data();
4670 WerrorS(
"Input polynomial is constant!");
4679 rlist->Init( r[0] );
4680 for(
int i=r[0];
i>0;
i--)
4695 WerrorS(
"Ground field not implemented!");
4702 unsigned long int ii = (
unsigned long int)arg2->
Data();
4729 WerrorS(
"The input polynomial must be univariate!");
4739 for (
i= deg;
i >= 0;
i-- )
4754 for (
i=deg;
i >= 0;
i--)
4762 roots->
solver( howclean );
4770 rlist->Init( elem );
4774 for (
j= 0;
j < elem;
j++ )
4783 for (
j= 0;
j < elem;
j++ )
4821 int tdg= (
int)(
long)arg3->
Data();
4828 WerrorS(
"Last input parameter must be > 0!");
4836 if (
m != (
int)
pow((
double)tdg+1,(
double)n) )
4838 Werror(
"Size of second input ideal must be equal to %d!",
4839 (
int)
pow((
double)tdg+1,(
double)n));
4846 WerrorS(
"Ground field not implemented!");
4852 for (
i= 0;
i < n;
i++ )
4861 WerrorS(
"Elements of first input ideal must not be equal to -1, 0, 1!");
4870 WerrorS(
"Elements of first input ideal must be numbers!");
4878 for (
i= 0;
i <
m;
i++ )
4887 WerrorS(
"Elements of second input ideal must be numbers!");
4917 else gls= (
ideal)(
v->Data());
4932 if (gls->m[
j]!=
NULL)
4938 WerrorS(
"Newton polytope not of expected dimension");
4952 unsigned long int ii=(
unsigned long int)
v->Data();
4960 else howclean= (
int)(
long)
v->Data();
4989 WerrorS(
"Error occurred during matrix setup!");
4996 smv=
ures->accessResMat()->getSubDet();
5002 WerrorS(
"Unsuitable input ideal: Minor of resultant matrix is singular!");
5020 int c=
iproots[0]->getAnzElems();
5038 WerrorS(
"Solver was unable to find any roots!");
5079 for (
j= 0;
j < elem;
j++ )
5141 Warn(
"deleting denom_list for ring change to %s",
IDID(
h));
5183 if((*iv)[
i]>=0) { neg=
FALSE;
break; }
5188 (*iv)[
i]= - (*iv)[
i];
5197 if((*iv)[
i]>=0) { neg=
FALSE;
break; }
5202 (*iv)[
i]= -(*iv)[
i];
5217 (*iv2)[2]=iv->
length()-2;
5235 (*iv2)[2]=iv->
length()-2;
5276 (*iv)[2] += (*iv2)[2];
5291 int last = 0, o=0, n = 1,
i=0, typ = 1,
j;
5303 R->wanted_maxExp=(*iv)[2]*2+1;
5316 WerrorS(
"invalid combination of orderings");
5324 WerrorS(
"more than one ordering c/C specified");
5330 R->block0=(
int *)
omAlloc0(n*
sizeof(
int));
5331 R->block1=(
int *)
omAlloc0(n*
sizeof(
int));
5337 for (
j=0;
j < n-1;
j++)
5368 R->block0[n] =
last+1;
5371 R->wvhdl[n][
i-2] = (*iv)[
i];
5373 if (weights[
last]==0) weights[
last]=(*iv)[
i]*typ;
5386 R->block0[n] =
last+1;
5388 else last += (*iv)[0];
5393 if (weights[
i]==0) weights[
i]=typ;
5405 const int s = (*iv)[2];
5415 const int s = (*iv)[2];
5417 if( 1 <
s ||
s < -1 )
return TRUE;
5433 R->block0[n] =
last+1;
5438 R->wvhdl[n][
i-2]=(*iv)[
i];
5440 if (weights[
last]==0) weights[
last]=(*iv)[
i]*typ;
5442 last=
R->block0[n]-1;
5447 R->block0[n] =
last+1;
5450 if (
R->block1[n]-
R->block0[n]+2>=iv->
length())
5451 WarnS(
"missing module weights");
5452 for (
i=2;
i<=(
R->block1[n]-
R->block0[n]+2);
i++)
5454 R->wvhdl[n][
i-2]=(*iv)[
i];
5456 if (weights[
last]==0) weights[
last]=(*iv)[
i]*typ;
5458 R->wvhdl[n][
i-2]=iv->
length() -3 -(
R->block1[n]-
R->block0[n]);
5461 R->wvhdl[n][
i-1]=(*iv)[
i];
5463 last=
R->block0[n]-1;
5468 R->block0[n] =
last+1;
5476 if (weights[
last]==0) weights[
last]=(*iv)[
i]*typ;
5478 last=
R->block0[n]-1;
5485 if (
Mtyp==-1) typ = -1;
5489 R->wvhdl[n][
i-2]=(*iv)[
i];
5491 R->block0[n] =
last+1;
5494 for(
i=
R->block1[n];
i>=
R->block0[n];
i--)
5496 if (weights[
i]==0) weights[
i]=typ;
5506 Werror(
"Internal Error: Unknown ordering %d", (*iv)[1]);
5513 Werror(
"mismatch of number of vars (%d) and ordering (>=%d vars)",
5521 for(
i=1;
i<=
R->N;
i++)
5522 {
if (weights[
i]<0) {
R->OrdSgn=-1;
break; }}
5536 if (
R->block1[n] !=
R->N)
5547 R->block0[n] <=
R->N)
5549 R->block1[n] =
R->N;
5553 Werror(
"mismatch of number of vars (%d) and ordering (%d vars)",
5572 *
p = (
char*)sl->
name;
5625 const int P =
pn->listLength();
5634 const int pars =
pnn->listLength();
5640 WerrorS(
"parameter expected");
5659 int ch = (
int)(
long)
pn->Data();
5670 if ((ch<2)||(ch!=
ch2))
5672 Warn(
"%d is invalid as characteristic of the ground field. 32003 is used.", ch);
5675 #ifndef TEST_ZN_AS_ZP
5686 cf->has_simple_Inverse=1;
5694 const int pars =
pnn->listLength();
5711 if ((ch!=0) && (ch!=
IsPrime(ch)))
5713 WerrorS(
"too many parameters");
5721 WerrorS(
"parameter expected");
5740 else if ((
pn->name !=
NULL)
5747 float_len=(
int)(
long)
pnn->Data();
5748 float_len2=float_len;
5752 float_len2=(
int)(
long)
pnn->Data();
5777 param.par_name=(
const char*)
"i";
5779 param.par_name = (
const char*)
pnn->name;
5786 else if ((
pn->name !=
NULL) && (
strcmp(
pn->name,
"integer") == 0))
5790 unsigned int modExponent = 1;
5802 modExponent = (
long)
pnn->Data();
5822 WerrorS(
"Wrong ground ring specification (module is 1)");
5825 if (modExponent < 1)
5827 WerrorS(
"Wrong ground ring specification (exponent smaller than 1");
5832 if (modExponent > 1 &&
cf ==
NULL)
5834 if ((
mpz_cmp_ui(modBase, 2) == 0) && (modExponent <= 8*
sizeof(
unsigned long)))
5845 WerrorS(
"modulus must not be 0 or parameter not allowed");
5851 info.exp= modExponent;
5860 WerrorS(
"modulus must not be 0 or parameter not allowed");
5866 info.exp= modExponent;
5876 if (r->qideal==
NULL)
5883 else if (
IDELEMS(r->qideal)==1)
5892 WerrorS(
"algebraic extension ring must have one minpoly");
5898 WerrorS(
"Wrong or unknown ground field specification");
5904 Print(
"pn[%p]: type: %d [%s]: %p, name: %s", (
void*)
p,
p->Typ(),
Tok2Cmdname(
p->Typ()),
p->Data(), (
p->name ==
NULL?
"NULL" :
p->name) );
5926 WerrorS(
"Invalid ground field specification");
5938 int l=
rv->listLength();
5950 WerrorS(
"name of ring variable expected");
6008 int l=
rv->listLength();
6020 WerrorS(
"name of ring variable expected");
6040 Werror(
"variable %d (%s) not in basering",
j+1,
R->names[
j]);
6053 for(
j=
R->block0[
i];
j<=
R->block1[
i];
j++)
6075 R->wvhdl[
i][perm[
j]-
R->block0[
i]]=
6102 R->order[
j-1]=
R->order[
j];
6103 R->block0[
j-1]=
R->block0[
j];
6104 R->block1[
j-1]=
R->block1[
j];
6106 R->wvhdl[
j-1]=
R->wvhdl[
j];
6114 while (
R->order[n]==0) n--;
6117 if (
R->block1[n] !=
R->N)
6128 R->block0[n] <=
R->N)
6130 R->block1[n] =
R->N;
6134 Werror(
"mismatch of number of vars (%d) and ordering (%d vars) in block %d",
6135 R->N,
R->block1[n],n);
6164 if ((r->ref<=0)&&(r->order!=
NULL))
6174 if (
j==0)
WarnS(
"killing the basering for level 0");
6179 while (r->idroot!=
NULL)
6182 killhdl2(r->idroot,&(r->idroot),r);
6228 Warn(
"deleting denom_list for ring change from %s",
IDID(
h));
6305 for(
i=
I->nrows*
I->ncols-1;
i>=0;
i--)
6317 switch (
p->language)
6326 if(
p->libname!=
NULL)
6327 Print(
",%s",
p->libname);
6342 tmp_in.data=(
void*)(
long)(*aa)[
i];
6350 Werror(
"apply fails at index %d",
i+1);
6380 res->data=(
void *)
l;
6387 for(
int i=0;
i<=
aa->nr;
i++)
6399 Werror(
"apply fails at index %d",
i+1);
6430 WerrorS(
"first argument to `apply` must allow an index");
6476 snprintf(
ss,len,
"parameter def %s;return(%s);\n",a,
s);
6542 snprintf(
buf,250,
"wrong length of parameters(%d), expected ",t);
6544 snprintf(
buf,250,
"par. %d is of undefined, expected ",nr);
6547 for(
int i=1;
i<=
T[0];
i++)
6570 for(
int i=1;
i<=
l;
i++,args=args->
next)
6576 || (t!=args->
Typ()))
6599 Print(
" %s (%s) -> %s",
Rational pow(const Rational &a, int e)
struct for passing initialization parameters to naInitChar
void atSet(idhdl root, char *name, void *data, int typ)
void * atGet(idhdl root, const char *name, int t, void *defaultReturnValue)
static int si_max(const int a, const int b)
static int si_min(const int a, const int b)
CanonicalForm map(const CanonicalForm &primElem, const Variable &alpha, const CanonicalForm &F, const Variable &beta)
map from to such that is mapped onto
unsigned char * proc[NUM_PROC]
poly singclap_resultant(poly f, poly g, poly x, const ring r)
ideal singclap_factorize(poly f, intvec **v, int with_exps, const ring r)
matrix singclap_irrCharSeries(ideal I, const ring r)
int * Zp_roots(poly p, const ring r)
idhdl get(const char *s, int lev)
void show(int mat=0, int spaces=0) const
virtual ideal getMatrix()
complex root finder for univariate polynomials based on laguers algorithm
gmp_complex * getRoot(const int i)
void fillContainer(number *_coeffs, number *_ievpoint, const int _var, const int _tdg, const rootType _rt, const int _anz)
bool solver(const int polishmode=PM_NONE)
Linear Programming / Linear Optimization using Simplex - Algorithm.
BOOLEAN mapFromMatrix(matrix m)
matrix mapToMatrix(matrix m)
Class used for (list of) interpreter objects.
void CleanUp(ring r=currRing)
INLINE_THIS void Init(int l=0)
Base class for solving 0-dim poly systems using u-resultant.
resMatrixBase * accessResMat()
vandermonde system solver for interpolating polynomials from their values
Coefficient rings, fields and other domains suitable for Singular polynomials.
static FORCE_INLINE long n_Int(number &n, const coeffs r)
conversion of n to an int; 0 if not possible in Z/pZ: the representing int lying in (-p/2 ....
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of 'n'
static FORCE_INLINE BOOLEAN nCoeff_is_GF(const coeffs r)
static FORCE_INLINE BOOLEAN nCoeff_is_Z(const coeffs r)
@ n_R
single prescision (6,6) real numbers
@ n_Q
rational (GMP) numbers
@ n_Znm
only used if HAVE_RINGS is defined
@ n_algExt
used for all algebraic extensions, i.e., the top-most extension in an extension tower is algebraic
@ n_Zn
only used if HAVE_RINGS is defined
@ n_long_R
real floating point (GMP) numbers
@ n_Z2m
only used if HAVE_RINGS is defined
@ n_transExt
used for all transcendental extensions, i.e., the top-most extension in an extension tower is transce...
@ n_Z
only used if HAVE_RINGS is defined
@ n_long_C
complex floating point (GMP) numbers
static FORCE_INLINE BOOLEAN nCoeff_is_numeric(const coeffs r)
static FORCE_INLINE void n_MPZ(mpz_t result, number &n, const coeffs r)
conversion of n to a GMP integer; 0 if not possible
static FORCE_INLINE nMapFunc n_SetMap(const coeffs src, const coeffs dst)
set the mapping function pointers for translating numbers from src to dst
static FORCE_INLINE char const ** n_ParameterNames(const coeffs r)
Returns a (const!) pointer to (const char*) names of parameters.
coeffs nInitChar(n_coeffType t, void *parameter)
one-time initialisations for new coeffs in case of an error return NULL
const unsigned short fftable[]
static FORCE_INLINE void nSetChar(const coeffs r)
initialisations after each ring change
static FORCE_INLINE BOOLEAN nCoeff_is_Ring(const coeffs r)
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete 'p'
static FORCE_INLINE char * nCoeffName(const coeffs cf)
static FORCE_INLINE number n_InitMPZ(mpz_t n, const coeffs r)
conversion of a GMP integer to number
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
static FORCE_INLINE BOOLEAN nCoeff_is_algExt(const coeffs r)
TRUE iff r represents an algebraic extension field.
number(* nMapFunc)(number a, const coeffs src, const coeffs dst)
maps "a", which lives in src, into dst
static FORCE_INLINE BOOLEAN nCoeff_is_long_C(const coeffs r)
static FORCE_INLINE BOOLEAN nCoeff_is_transExt(const coeffs r)
TRUE iff r represents a transcendental extension field.
Creation data needed for finite fields.
const CanonicalForm int s
const Variable & v
< [in] a sqrfree bivariate poly
int search(const CFArray &A, const CanonicalForm &F, int i, int j)
search for F in A between index i and j
char name(const Variable &v)
void WerrorS(const char *s)
VAR char my_yylinebuf[80]
char *(* fe_fgets_stdin)(const char *pr, char *s, int size)
void newBuffer(char *s, feBufferTypes t, procinfo *pi, int lineno)
ideal maMapIdeal(const ideal map_id, const ring preimage_r, const ideal image_id, const ring image_r, const nMapFunc nMap)
polynomial map for ideals/module/matrix map_id: the ideal to map map_r: the base ring for map_id imag...
int iiTestConvert(int inputType, int outputType)
const char * iiTwoOps(int t)
const char * Tok2Cmdname(int tok)
static int RingDependend(int t)
void scComputeHC(ideal S, ideal Q, int ak, poly &hEdge)
void hIndMult(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
void hDimSolve(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
void hIndAllMult(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
void hKill(monf xmem, int Nvar)
void hDelete(scfmon ev, int ev_length)
void hPure(scfmon stc, int a, int *Nstc, varset var, int Nvar, scmon pure, int *Npure)
void hSupp(scfmon stc, int Nstc, varset var, int *Nvar)
void hLexR(scfmon rad, int Nrad, varset var, int Nvar)
scfmon hInit(ideal S, ideal Q, int *Nexist)
void hRadical(scfmon rad, int *Nrad, int Nvar)
#define idDelete(H)
delete an ideal
void idGetNextChoise(int r, int end, BOOLEAN *endch, int *choise)
static BOOLEAN idIsZeroDim(ideal i)
BOOLEAN idIs0(ideal h)
returns true if h is the zero ideal
#define idMaxIdeal(D)
initialise the maximal ideal (at 0)
int idGetNumberOfChoise(int t, int d, int begin, int end, int *choise)
void idInitChoise(int r, int beg, int end, BOOLEAN *endch, int *choise)
STATIC_VAR int * multiplicity
static BOOLEAN length(leftv result, leftv arg)
intvec * ivCopy(const intvec *o)
#define IMATELEM(M, I, J)
int IsCmd(const char *n, int &tok)
BOOLEAN iiExprArith1(leftv res, leftv a, int op)
BOOLEAN jjPROC(leftv res, leftv u, leftv v)
BOOLEAN iiAssign(leftv l, leftv r, BOOLEAN toplevel)
BOOLEAN iiConvert(int inputType, int outputType, int index, leftv input, leftv output, const struct sConvertTypes *dConvertTypes)
idhdl ggetid(const char *n)
void killhdl2(idhdl h, idhdl *ih, ring r)
idhdl enterid(const char *s, int lev, int t, idhdl *root, BOOLEAN init, BOOLEAN search)
VAR proclevel * procstack
idhdl packFindHdl(package r)
EXTERN_VAR omBin sleftv_bin
INST_VAR sleftv iiRETURNEXPR
char * iiGetLibProcBuffer(procinfo *pi, int part)
procinfo * iiInitSingularProcinfo(procinfov pi, const char *libname, const char *procname, int, long pos, BOOLEAN pstatic)
lists rDecompose(const ring r)
@ semicListWrongNumberOfNumerators
@ semicListFirstElementWrongType
@ semicListSecondElementWrongType
@ semicListFourthElementWrongType
@ semicListWrongNumberOfDenominators
@ semicListThirdElementWrongType
@ semicListWrongNumberOfMultiplicities
@ semicListFifthElementWrongType
@ semicListSixthElementWrongType
BOOLEAN iiApplyINTVEC(leftv res, leftv a, int op, leftv proc)
BOOLEAN jjVARIABLES_P(leftv res, leftv u)
lists rDecompose_list_cf(const ring r)
int iiOpsTwoChar(const char *s)
BOOLEAN spaddProc(leftv result, leftv first, leftv second)
BOOLEAN jjMINRES(leftv res, leftv v)
BOOLEAN killlocals_list(int v, lists L)
BOOLEAN iiParameter(leftv p)
STATIC_VAR BOOLEAN iiNoKeepRing
int iiDeclCommand(leftv sy, leftv name, int lev, int t, idhdl *root, BOOLEAN isring, BOOLEAN init_b)
static void rRenameVars(ring R)
void iiCheckPack(package &p)
BOOLEAN iiCheckTypes(leftv args, const short *type_list, int report)
check a list of arguemys against a given field of types return TRUE if the types match return FALSE (...
BOOLEAN iiApply(leftv res, leftv a, int op, leftv proc)
void list_cmd(int typ, const char *what, const char *prefix, BOOLEAN iterate, BOOLEAN fullname)
VAR BOOLEAN iiDebugMarker
ring rInit(leftv pn, leftv rv, leftv ord)
leftv iiMap(map theMap, const char *what)
int iiRegularity(lists L)
BOOLEAN rDecompose_CF(leftv res, const coeffs C)
static void rDecomposeC_41(leftv h, const coeffs C)
void iiMakeResolv(resolvente r, int length, int rlen, char *name, int typ0, intvec **weights)
BOOLEAN iiARROW(leftv r, char *a, char *s)
BOOLEAN semicProc3(leftv res, leftv u, leftv v, leftv w)
BOOLEAN syBetti1(leftv res, leftv u)
BOOLEAN iiApplyLIST(leftv res, leftv a, int op, leftv proc)
static void rDecomposeC(leftv h, const ring R)
int exprlist_length(leftv v)
BOOLEAN mpKoszul(leftv res, leftv c, leftv b, leftv id)
poly iiHighCorner(ideal I, int ak)
BOOLEAN spectrumfProc(leftv result, leftv first)
lists listOfRoots(rootArranger *self, const unsigned int oprec)
static void jjINT_S_TO_ID(int n, int *e, leftv res)
lists scIndIndset(ideal S, BOOLEAN all, ideal Q)
BOOLEAN jjCHARSERIES(leftv res, leftv u)
void rDecomposeCF(leftv h, const ring r, const ring R)
BOOLEAN iiApplyIDEAL(leftv, leftv, int, leftv)
static void list1(const char *s, idhdl h, BOOLEAN c, BOOLEAN fullname)
void list_error(semicState state)
BOOLEAN mpJacobi(leftv res, leftv a)
const char * iiTwoOps(int t)
BOOLEAN iiBranchTo(leftv, leftv args)
BOOLEAN jjBETTI2_ID(leftv res, leftv u, leftv v)
BOOLEAN iiTestAssume(leftv a, leftv b)
void iiSetReturn(const leftv source)
BOOLEAN iiAssignCR(leftv r, leftv arg)
BOOLEAN spmulProc(leftv result, leftv first, leftv second)
spectrumState spectrumCompute(poly h, lists *L, int fast)
idhdl rFindHdl(ring r, idhdl n)
syStrategy syConvList(lists li)
BOOLEAN spectrumProc(leftv result, leftv first)
BOOLEAN iiDefaultParameter(leftv p)
void rComposeC(lists L, ring R)
BOOLEAN iiCheckRing(int i)
#define BREAK_LINE_LENGTH
static void rDecomposeRing_41(leftv h, const coeffs C)
spectrumState spectrumStateFromList(spectrumPolyList &speclist, lists *L, int fast)
BOOLEAN syBetti2(leftv res, leftv u, leftv w)
ring rSubring(ring org_ring, sleftv *rv)
BOOLEAN kWeight(leftv res, leftv id)
static leftv rOptimizeOrdAsSleftv(leftv ord)
BOOLEAN rSleftvOrdering2Ordering(sleftv *ord, ring R)
static BOOLEAN rComposeOrder(const lists L, const BOOLEAN check_comp, ring R)
spectrum spectrumFromList(lists l)
static idhdl rSimpleFindHdl(const ring r, const idhdl root, const idhdl n)
static void iiReportTypes(int nr, int t, const short *T)
void rDecomposeRing(leftv h, const ring R)
BOOLEAN jjRESULTANT(leftv res, leftv u, leftv v, leftv w)
static BOOLEAN iiInternalExport(leftv v, int toLev)
static void rDecompose_23456(const ring r, lists L)
void copy_deep(spectrum &spec, lists l)
void killlocals_rec(idhdl *root, int v, ring r)
semicState list_is_spectrum(lists l)
static void killlocals0(int v, idhdl *localhdl, const ring r)
BOOLEAN semicProc(leftv res, leftv u, leftv v)
ring rCompose(const lists L, const BOOLEAN check_comp, const long bitmask, const int isLetterplace)
BOOLEAN iiApplyBIGINTMAT(leftv, leftv, int, leftv)
BOOLEAN jjBETTI2(leftv res, leftv u, leftv v)
const char * lastreserved
static BOOLEAN rSleftvList2StringArray(leftv sl, char **p)
lists syConvRes(syStrategy syzstr, BOOLEAN toDel, int add_row_shift)
BOOLEAN iiWRITE(leftv, leftv v)
void paPrint(const char *n, package p)
static resolvente iiCopyRes(resolvente r, int l)
BOOLEAN kQHWeight(leftv res, leftv v)
void rComposeRing(lists L, ring R)
BOOLEAN iiExport(leftv v, int toLev)
BOOLEAN jjBETTI(leftv res, leftv u)
void spectrumPrintError(spectrumState state)
lists getList(spectrum &spec)
BOOLEAN jjVARIABLES_ID(leftv res, leftv u)
static BOOLEAN rComposeVar(const lists L, ring R)
const struct sValCmd1 dArith1[]
ideal kStd(ideal F, ideal Q, tHomog h, intvec **w, intvec *hilb, int syzComp, int newIdeal, intvec *vw, s_poly_proc_t sp)
VAR denominator_list DENOMINATOR_LIST
BOOLEAN nc_CallPlural(matrix cc, matrix dd, poly cn, poly dn, ring r, bool bSetupQuotient, bool bCopyInput, bool bBeQuiet, ring curr, bool dummy_ring=false)
returns TRUE if there were errors analyze inputs, check them for consistency detects nc_type,...
char * lString(lists l, BOOLEAN typed, int dim)
BOOLEAN lRingDependend(lists L)
resolvente liFindRes(lists L, int *len, int *typ0, intvec ***weights)
lists liMakeResolv(resolvente r, int length, int reallen, int typ0, intvec **weights, int add_row_shift)
void maFindPerm(char const *const *const preim_names, int preim_n, char const *const *const preim_par, int preim_p, char const *const *const names, int n, char const *const *const par, int nop, int *perm, int *par_perm, n_coeffType ch)
BOOLEAN maApplyFetch(int what, map theMap, leftv res, leftv w, ring preimage_r, int *perm, int *par_perm, int P, nMapFunc nMap)
static matrix mu(matrix A, const ring R)
matrix mpNew(int r, int c)
create a r x c zero-matrix
matrix mp_Copy(matrix a, const ring r)
copies matrix a (from ring r to r)
#define MATELEM(mat, i, j)
1-based access to matrix
void mult(unsigned long *result, unsigned long *a, unsigned long *b, unsigned long p, int dega, int degb)
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
ideal loNewtonPolytope(const ideal id)
EXTERN_VAR size_t gmp_output_digits
uResultant::resMatType determineMType(int imtype)
mprState mprIdealCheck(const ideal theIdeal, const char *name, uResultant::resMatType mtype, BOOLEAN rmatrix=false)
char * complexToStr(gmp_complex &c, const unsigned int oprec, const coeffs src)
gmp_float sqrt(const gmp_float &a)
void setGMPFloatDigits(size_t digits, size_t rest)
Set size of mantissa digits - the number of output digits (basis 10) the size of mantissa consists of...
BOOLEAN nuLagSolve(leftv res, leftv arg1, leftv arg2, leftv arg3)
find the (complex) roots an univariate polynomial Determines the roots of an univariate polynomial us...
BOOLEAN nuVanderSys(leftv res, leftv arg1, leftv arg2, leftv arg3)
COMPUTE: polynomial p with values given by v at points p1,..,pN derived from p; more precisely: consi...
BOOLEAN nuMPResMat(leftv res, leftv arg1, leftv arg2)
returns module representing the multipolynomial resultant matrix Arguments 2: ideal i,...
BOOLEAN loSimplex(leftv res, leftv args)
Implementation of the Simplex Algorithm.
BOOLEAN loNewtonP(leftv res, leftv arg1)
compute Newton Polytopes of input polynomials
BOOLEAN nuUResSolve(leftv res, leftv args)
solve a multipolynomial system using the u-resultant Input ideal must be 0-dimensional and (currRing-...
The main handler for Singular numbers which are suitable for Singular polynomials.
#define nPrint(a)
only for debug, over any initialized currRing
#define SHORT_REAL_LENGTH
#define omFreeSize(addr, size)
#define omCheckAddr(addr)
#define omReallocSize(addr, o_size, size)
#define omCheckAddrSize(addr, size)
#define omFreeBin(addr, bin)
#define omFreeBinAddr(addr)
#define omRealloc0Size(addr, o_size, size)
poly p_PermPoly(poly p, const int *perm, const ring oldRing, const ring dst, nMapFunc nMap, const int *par_perm, int OldPar, BOOLEAN use_mult)
static int pLength(poly a)
#define __pp_Mult_nn(p, n, r)
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent @Note: VarOffset encodes the position in p->exp
static void p_Setm(poly p, const ring r)
static void p_Delete(poly *p, const ring r)
static poly p_Init(const ring r, omBin bin)
static poly p_Copy(poly p, const ring r)
returns a copy of p
static long p_Totaldegree(poly p, const ring r)
#define __p_Mult_nn(p, n, r)
void rChangeCurrRing(ring r)
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
Compatibility layer for legacy polynomial operations (over currRing)
static long pTotaldegree(poly p)
#define pIsConstant(p)
like above, except that Comp must be 0
#define pCmp(p1, p2)
pCmp: args may be NULL returns: (p2==NULL ? 1 : (p1 == NULL ? -1 : p_LmCmp(p1, p2)))
#define pGetVariables(p, e)
#define pGetExp(p, i)
Exponent.
#define pCopy(p)
return a copy of the poly
ideal idrCopyR(ideal id, ring src_r, ring dest_r)
void PrintS(const char *s)
void Werror(const char *fmt,...)
BOOLEAN rComplete(ring r, int force)
this needs to be called whenever a new ring is created: new fields in ring are created (like VarOffse...
const char * rSimpleOrdStr(int ord)
int rTypeOfMatrixOrder(const intvec *order)
ring rAssure_HasComp(const ring r)
ring rCopy0(const ring r, BOOLEAN copy_qideal, BOOLEAN copy_ordering)
BOOLEAN rCheckIV(const intvec *iv)
rRingOrder_t rOrderName(char *ordername)
void rDelete(ring r)
unconditionally deletes fields in r
ring rDefault(const coeffs cf, int N, char **n, int ord_size, rRingOrder_t *ord, int *block0, int *block1, int **wvhdl, unsigned long bitmask)
BOOLEAN rEqual(ring r1, ring r2, BOOLEAN qr)
returns TRUE, if r1 equals r2 FALSE, otherwise Equality is determined componentwise,...
void rSetSyzComp(int k, const ring r)
static BOOLEAN rField_is_R(const ring r)
static BOOLEAN rField_is_Zp_a(const ring r)
static BOOLEAN rField_is_Z(const ring r)
static BOOLEAN rField_is_Zp(const ring r)
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
static BOOLEAN rField_is_long_C(const ring r)
static int rBlocks(const ring r)
static ring rIncRefCnt(ring r)
static BOOLEAN rField_is_Zn(const ring r)
static int rPar(const ring r)
(r->cf->P)
static int rInternalChar(const ring r)
static BOOLEAN rIsLPRing(const ring r)
@ ringorder_a64
for int64 weights
@ ringorder_aa
for idElimination, like a, except pFDeg, pWeigths ignore it
@ ringorder_IS
Induced (Schreyer) ordering.
static BOOLEAN rField_is_Q_a(const ring r)
static BOOLEAN rField_is_Q(const ring r)
static void rDecRefCnt(ring r)
static char const ** rParameter(const ring r)
(r->cf->parameter)
static BOOLEAN rField_is_long_R(const ring r)
static BOOLEAN rField_is_numeric(const ring r)
static BOOLEAN rField_is_GF(const ring r)
static short rVar(const ring r)
#define rVar(r) (r->N)
BOOLEAN rHasLocalOrMixedOrdering(const ring r)
#define rField_is_Ring(R)
int status int void size_t count
int status int void * buf
BOOLEAN slWrite(si_link l, leftv v)
ideal idInit(int idsize, int rank)
initialise an ideal / module
intvec * id_QHomWeight(ideal id, const ring r)
long id_RankFreeModule(ideal s, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size
BOOLEAN hasAxis(ideal J, int k, const ring r)
int hasOne(ideal J, const ring r)
BOOLEAN ringIsLocal(const ring r)
static BOOLEAN hasConstTerm(poly h, const ring r)
poly computeWC(const newtonPolygon &np, Rational max_weight, const ring r)
static BOOLEAN hasLinearTerm(poly h, const ring r)
void computeNF(ideal stdJ, poly hc, poly wc, spectrumPolyList *NF, const ring r)
INST_VAR sleftv sLastPrinted
intvec * syBetti(resolvente res, int length, int *regularity, intvec *weights, BOOLEAN tomin, int *row_shift)
void syMinimizeResolvente(resolvente res, int length, int first)
void syKillComputation(syStrategy syzstr, ring r=currRing)
resolvente syReorder(resolvente res, int length, syStrategy syzstr, BOOLEAN toCopy=TRUE, resolvente totake=NULL)
intvec * syBettiOfComputation(syStrategy syzstr, BOOLEAN minim=TRUE, int *row_shift=NULL, intvec *weights=NULL)
void syKillEmptyEntres(resolvente res, int length)
struct for passing initialization parameters to naInitChar
THREAD_VAR double(* wFunctional)(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)
void wCall(poly *s, int sl, int *x, double wNsqr, const ring R)
double wFunctionalBuch(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)