My Project
Loading...
Searching...
No Matches
Macros | Functions | Variables
p_polys.cc File Reference
#include <ctype.h>
#include "misc/auxiliary.h"
#include "misc/options.h"
#include "misc/intvec.h"
#include "coeffs/longrat.h"
#include "coeffs/numbers.h"
#include "polys/PolyEnumerator.h"
#include "polys/ext_fields/transext.h"
#include "polys/ext_fields/algext.h"
#include "polys/weight.h"
#include "polys/simpleideals.h"
#include "ring.h"
#include "p_polys.h"
#include "polys/templates/p_MemCmp.h"
#include "polys/templates/p_MemAdd.h"
#include "polys/templates/p_MemCopy.h"
#include "nc/nc.h"
#include "nc/sca.h"
#include "polys/shiftop.h"
#include "clapsing.h"
#include "polys/templates/p_Delete__T.cc"

Go to the source code of this file.

Macros

#define TRANSEXT_PRIVATES
 
#define MYTEST   0
 
#define CLEARENUMERATORS   1
 
#define LINKAGE
 
#define p_Delete__T   p_ShallowDelete
 
#define n_Delete__T(n, r)   do {} while (0)
 

Functions

poly p_Farey (poly p, number N, const ring r)
 
poly p_ChineseRemainder (poly *xx, number *x, number *q, int rl, CFArray &inv_cache, const ring R)
 
void p_Setm_General (poly p, const ring r)
 
void p_Setm_Syz (poly p, ring r, int *Components, long *ShiftedComponents)
 
void p_Setm_Dummy (poly p, const ring r)
 
void p_Setm_TotalDegree (poly p, const ring r)
 
void p_Setm_WFirstTotalDegree (poly p, const ring r)
 
p_SetmProc p_GetSetmProc (const ring r)
 
long p_Deg (poly a, const ring r)
 
long p_WFirstTotalDegree (poly p, const ring r)
 
long p_WTotaldegree (poly p, const ring r)
 
long p_DegW (poly p, const int *w, const ring R)
 
int p_Weight (int i, const ring r)
 
long p_WDegree (poly p, const ring r)
 
long pLDeg0 (poly p, int *l, const ring r)
 
long pLDeg0c (poly p, int *l, const ring r)
 
long pLDegb (poly p, int *l, const ring r)
 
long pLDeg1 (poly p, int *l, const ring r)
 
long pLDeg1c (poly p, int *l, const ring r)
 
long pLDeg1_Deg (poly p, int *l, const ring r)
 
long pLDeg1c_Deg (poly p, int *l, const ring r)
 
long pLDeg1_Totaldegree (poly p, int *l, const ring r)
 
long pLDeg1c_Totaldegree (poly p, int *l, const ring r)
 
long pLDeg1_WFirstTotalDegree (poly p, int *l, const ring r)
 
long pLDeg1c_WFirstTotalDegree (poly p, int *l, const ring r)
 
static unsigned long p_GetMaxExpL2 (unsigned long l1, unsigned long l2, const ring r, unsigned long number_of_exp)
 
static unsigned long p_GetMaxExpL2 (unsigned long l1, unsigned long l2, const ring r)
 
poly p_GetMaxExpP (poly p, const ring r)
 return monomial r such that GetExp(r,i) is maximum of all monomials in p; coeff == 0, next == NULL, ord is not set
 
unsigned long p_GetMaxExpL (poly p, const ring r, unsigned long l_max)
 return the maximal exponent of p in form of the maximal long var
 
BOOLEAN p_OneComp (poly p, const ring r)
 return TRUE if all monoms have the same component
 
int p_IsPurePower (const poly p, const ring r)
 return i, if head depends only on var(i)
 
int p_IsUnivariate (poly p, const ring r)
 return i, if poly depends only on var(i)
 
int p_GetVariables (poly p, int *e, const ring r)
 set entry e[i] to 1 if var(i) occurs in p, ignore var(j) if e[j]>0 return #(e[i]>0)
 
poly p_ISet (long i, const ring r)
 returns the poly representing the integer i
 
poly p_One (const ring r)
 
void p_Split (poly p, poly *h)
 
BOOLEAN p_HasNotCF (poly p1, poly p2, const ring r)
 
BOOLEAN p_HasNotCFRing (poly p1, poly p2, const ring r)
 
const charp_Read (const char *st, poly &rc, const ring r)
 
poly p_mInit (const char *st, BOOLEAN &ok, const ring r)
 
poly p_NSet (number n, const ring r)
 returns the poly representing the number n, destroys n
 
poly p_MDivide (poly a, poly b, const ring r)
 
poly p_Div_nn (poly p, const number n, const ring r)
 
poly p_Div_mm (poly p, const poly m, const ring r)
 divide polynomial by monomial
 
poly p_DivideM (poly a, poly b, const ring r)
 
poly pp_DivideM (poly a, poly b, const ring r)
 
BOOLEAN p_DivisibleByRingCase (poly f, poly g, const ring r)
 divisibility check over ground ring (which may contain zero divisors); TRUE iff LT(f) divides LT(g), i.e., LT(f)*c*m = LT(g), for some coefficient c and some monomial m; does not take components into account
 
void p_Lcm (const poly a, const poly b, poly m, const ring r)
 
poly p_Lcm (const poly a, const poly b, const ring r)
 
poly p_LcmRat (const poly a, const poly b, const long lCompM, const ring r)
 
void p_LmDeleteAndNextRat (poly *p, int ishift, ring r)
 
poly p_GetCoeffRat (poly p, int ishift, ring r)
 
void p_ContentRat (poly &ph, const ring r)
 
poly p_PolyDiv (poly &p, const poly divisor, const BOOLEAN needResult, const ring r)
 assumes that p and divisor are univariate polynomials in r, mentioning the same variable; assumes divisor != NULL; p may be NULL; assumes a global monomial ordering in r; performs polynomial division of p by divisor:
 
poly p_Diff (poly a, int k, const ring r)
 
static poly p_DiffOpM (poly a, poly b, BOOLEAN multiply, const ring r)
 
poly p_DiffOp (poly a, poly b, BOOLEAN multiply, const ring r)
 
poly p_Sub (poly p1, poly p2, const ring r)
 
static poly p_MonPower (poly p, int exp, const ring r)
 
static void p_MonMult (poly p, poly q, const ring r)
 
static poly p_MonMultC (poly p, poly q, const ring rr)
 
static numberpnBin (int exp, const ring r)
 
static void pnFreeBin (number *bin, int exp, const coeffs r)
 
static poly p_TwoMonPower (poly p, int exp, const ring r)
 
static poly p_Pow (poly p, int i, const ring r)
 
static poly p_Pow_charp (poly p, int i, const ring r)
 
poly p_Power (poly p, int i, const ring r)
 
void p_Content (poly ph, const ring r)
 
void p_ContentForGB (poly ph, const ring r)
 
void p_SimpleContent (poly ph, int smax, const ring r)
 
number p_InitContent (poly ph, const ring r)
 
poly p_Cleardenom (poly p, const ring r)
 
void p_Cleardenom_n (poly ph, const ring r, number &c)
 
void p_ProjectiveUnique (poly ph, const ring r)
 
int p_Size (poly p, const ring r)
 
poly p_Homogen (poly p, int varnum, const ring r)
 
BOOLEAN p_IsHomogeneous (poly p, const ring r)
 
BOOLEAN p_IsHomogeneousW (poly p, const intvec *w, const ring r)
 
BOOLEAN p_IsHomogeneousW (poly p, const intvec *w, const intvec *module_w, const ring r)
 
BOOLEAN p_VectorHasUnitB (poly p, int *k, const ring r)
 
void p_VectorHasUnit (poly p, int *k, int *len, const ring r)
 
poly p_TakeOutComp (poly *p, int k, const ring r)
 
void p_TakeOutComp (poly *r_p, long comp, poly *r_q, int *lq, const ring r)
 Splits *p into two polys: *q which consists of all monoms with component == comp and *p of all other monoms *lq == pLength(*q) On return all components pf *q == 0.
 
void p_DeleteComp (poly *p, int k, const ring r)
 
poly p_Vec2Poly (poly v, int k, const ring r)
 
void p_Vec2Array (poly v, poly *p, int len, const ring r)
 vector to already allocated array (len>=p_MaxComp(v,r))
 
void p_Vec2Polys (poly v, poly **p, int *len, const ring r)
 
void pSetDegProcs (ring r, pFDegProc new_FDeg, pLDegProc new_lDeg)
 
void pRestoreDegProcs (ring r, pFDegProc old_FDeg, pLDegProc old_lDeg)
 
static long pModDeg (poly p, ring r)
 
void p_SetModDeg (intvec *w, ring r)
 
void pEnlargeSet (poly **p, int l, int increment)
 
void p_Norm (poly p1, const ring r)
 
void p_Normalize (poly p, const ring r)
 
static void p_SplitAndReversePoly (poly p, int n, poly *non_zero, poly *zero, const ring r)
 
static poly p_Subst1 (poly p, int n, const ring r)
 
static poly p_Subst2 (poly p, int n, number e, const ring r)
 
static poly p_Subst0 (poly p, int n, const ring r)
 
poly p_Subst (poly p, int n, poly e, const ring r)
 
poly n_PermNumber (const number z, const int *par_perm, const int, const ring src, const ring dst)
 
poly p_PermPoly (poly p, const int *perm, const ring oldRing, const ring dst, nMapFunc nMap, const int *par_perm, int OldPar, BOOLEAN use_mult)
 
poly pp_Jet (poly p, int m, const ring R)
 
poly pp_Jet0 (poly p, const ring R)
 
poly p_Jet (poly p, int m, const ring R)
 
poly pp_JetW (poly p, int m, int *w, const ring R)
 
poly p_JetW (poly p, int m, int *w, const ring R)
 
int p_MinDeg (poly p, intvec *w, const ring R)
 
static poly p_Invers (int n, poly u, intvec *w, const ring R)
 
poly p_Series (int n, poly p, poly u, intvec *w, const ring R)
 
BOOLEAN p_EqualPolys (poly p1, poly p2, const ring r)
 
static BOOLEAN p_ExpVectorEqual (poly p1, poly p2, const ring r1, const ring r2)
 
BOOLEAN p_EqualPolys (poly p1, poly p2, const ring r1, const ring r2)
 same as the usual p_EqualPolys for polys belonging to equal rings
 
BOOLEAN p_ComparePolys (poly p1, poly p2, const ring r)
 returns TRUE if p1 is a skalar multiple of p2 assume p1 != NULL and p2 != NULL
 
poly p_Last (const poly p, int &l, const ring r)
 
int p_Var (poly m, const ring r)
 
int p_LowVar (poly p, const ring r)
 the minimal index of used variables - 1
 
void p_Shift (poly *p, int i, const ring r)
 shifts components of the vector p by i
 
static unsigned long GetBitFields (const long e, const unsigned int s, const unsigned int n)
 
unsigned long p_GetShortExpVector (const poly p, const ring r)
 
unsigned long p_GetShortExpVector0 (const poly p, const ring r)
 
unsigned long p_GetShortExpVector1 (const poly p, const ring r)
 
int p_Compare (const poly a, const poly b, const ring R)
 
poly p_GcdMon (poly f, poly g, const ring r)
 polynomial gcd for f=mon
 
poly p_CopyPowerProduct0 (const poly p, number n, const ring r)
 like p_Head, but with coefficient n
 
poly p_CopyPowerProduct (const poly p, const ring r)
 like p_Head, but with coefficient 1
 
poly p_Head0 (const poly p, const ring r)
 like p_Head, but allow NULL coeff
 
int p_MaxExpPerVar (poly p, int i, const ring r)
 max exponent of variable x_i in p
 

Variables

STATIC_VAR int_components = NULL
 
STATIC_VAR long_componentsShifted = NULL
 
STATIC_VAR int _componentsExternal = 0
 
VAR BOOLEAN pSetm_error =0
 
STATIC_VAR pFDegProc pOldFDeg
 
STATIC_VAR pLDegProc pOldLDeg
 
STATIC_VAR BOOLEAN pOldLexOrder
 

Macro Definition Documentation

◆ CLEARENUMERATORS

#define CLEARENUMERATORS   1

Definition at line 2357 of file p_polys.cc.

◆ LINKAGE

#define LINKAGE

Definition at line 4934 of file p_polys.cc.

◆ MYTEST

#define MYTEST   0

Definition at line 155 of file p_polys.cc.

◆ n_Delete__T

#define n_Delete__T (   n,
 
)    do {} while (0)

Definition at line 4938 of file p_polys.cc.

◆ p_Delete__T

#define p_Delete__T   p_ShallowDelete

Definition at line 4936 of file p_polys.cc.

◆ TRANSEXT_PRIVATES

#define TRANSEXT_PRIVATES

Definition at line 24 of file p_polys.cc.

Function Documentation

◆ GetBitFields()

static unsigned long GetBitFields ( const long  e,
const unsigned int  s,
const unsigned int  n 
)
inlinestatic

Definition at line 4798 of file p_polys.cc.

4800{
4801 unsigned int i = 0;
4802 unsigned long ev = 0L;
4803 assume(n > 0 && s < BIT_SIZEOF_LONG);
4804 do
4805 {
4807 if (e > (long) i) ev |= Sy_bitL(s+i);
4808 else break;
4809 i++;
4810 }
4811 while (i < n);
4812 return ev;
4813}
#define BIT_SIZEOF_LONG
Definition auxiliary.h:80
int i
Definition cfEzgcd.cc:132
const CanonicalForm int s
Definition facAbsFact.cc:51
#define assume(x)
Definition mod2.h:389
#define Sy_bitL(x)
Definition options.h:32

◆ n_PermNumber()

poly n_PermNumber ( const number  z,
const int par_perm,
const int  OldPar,
const ring  src,
const ring  dst 
)

Definition at line 4049 of file p_polys.cc.

4050{
4051#if 0
4052 PrintS("\nSource Ring: \n");
4053 rWrite(src);
4054
4055 if(0)
4056 {
4057 number zz = n_Copy(z, src->cf);
4058 PrintS("z: "); n_Write(zz, src);
4059 n_Delete(&zz, src->cf);
4060 }
4061
4062 PrintS("\nDestination Ring: \n");
4063 rWrite(dst);
4064
4065 /*Print("\nOldPar: %d\n", OldPar);
4066 for( int i = 1; i <= OldPar; i++ )
4067 {
4068 Print("par(%d) -> par/var (%d)\n", i, par_perm[i-1]);
4069 }*/
4070#endif
4071 if( z == NULL )
4072 return NULL;
4073
4074 const coeffs srcCf = src->cf;
4075 assume( srcCf != NULL );
4076
4078 assume( src->cf->extRing!=NULL );
4079
4080 poly zz = NULL;
4081
4082 const ring srcExtRing = srcCf->extRing;
4083 assume( srcExtRing != NULL );
4084
4085 const coeffs dstCf = dst->cf;
4086 assume( dstCf != NULL );
4087
4088 if( nCoeff_is_algExt(srcCf) ) // nCoeff_is_GF(srcCf)?
4089 {
4090 zz = (poly) z;
4091 if( zz == NULL ) return NULL;
4092 }
4093 else if (nCoeff_is_transExt(srcCf))
4094 {
4095 assume( !IS0(z) );
4096
4097 zz = NUM((fraction)z);
4098 p_Test (zz, srcExtRing);
4099
4100 if( zz == NULL ) return NULL;
4101 if( !DENIS1((fraction)z) )
4102 {
4104 WarnS("Not defined: Cannot map a rational fraction and make a polynomial out of it! Ignoring the denominator.");
4105 }
4106 }
4107 else
4108 {
4109 assume (FALSE);
4110 WerrorS("Number permutation is not implemented for this data yet!");
4111 return NULL;
4112 }
4113
4114 assume( zz != NULL );
4115 p_Test (zz, srcExtRing);
4116
4118
4119 assume( nMap != NULL );
4120
4121 poly qq;
4122 if ((par_perm == NULL) && (rPar(dst) != 0 && rVar (srcExtRing) > 0))
4123 {
4124 int* perm;
4125 perm=(int *)omAlloc0((rVar(srcExtRing)+1)*sizeof(int));
4126 for(int i=si_min(rVar(srcExtRing),rPar(dst));i>0;i--)
4127 perm[i]=-i;
4129 omFreeSize ((ADDRESS)perm, (rVar(srcExtRing)+1)*sizeof(int));
4130 }
4131 else
4133
4135 && (!DENIS1((fraction)z))
4137 {
4139 qq=p_Div_nn(qq,n,dst);
4140 n_Delete(&n,dstCf);
4142 }
4143 p_Test (qq, dst);
4144
4145 return qq;
4146}
#define FALSE
Definition auxiliary.h:96
static int si_min(const int a, const int b)
Definition auxiliary.h:125
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of 'n'
Definition coeffs.h:455
static FORCE_INLINE BOOLEAN nCoeff_is_GF(const coeffs r)
Definition coeffs.h:832
static FORCE_INLINE nMapFunc n_SetMap(const coeffs src, const coeffs dst)
set the mapping function pointers for translating numbers from src to dst
Definition coeffs.h:701
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete 'p'
Definition coeffs.h:459
static FORCE_INLINE void n_Write(number n, const coeffs r, const BOOLEAN bShortOut=TRUE)
Definition coeffs.h:592
static FORCE_INLINE BOOLEAN nCoeff_is_algExt(const coeffs r)
TRUE iff r represents an algebraic extension field.
Definition coeffs.h:903
number(* nMapFunc)(number a, const coeffs src, const coeffs dst)
maps "a", which lives in src, into dst
Definition coeffs.h:80
static FORCE_INLINE BOOLEAN nCoeff_is_transExt(const coeffs r)
TRUE iff r represents a transcendental extension field.
Definition coeffs.h:911
#define WarnS
Definition emacs.cc:78
void WerrorS(const char *s)
Definition feFopen.cc:24
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
Definition monomials.h:44
The main handler for Singular numbers which are suitable for Singular polynomials.
#define omFreeSize(addr, size)
#define omAlloc0(size)
#define NULL
Definition omList.c:12
poly p_PermPoly(poly p, const int *perm, const ring oldRing, const ring dst, nMapFunc nMap, const int *par_perm, int OldPar, BOOLEAN use_mult)
Definition p_polys.cc:4152
poly p_Div_nn(poly p, const number n, const ring r)
Definition p_polys.cc:1506
void p_Normalize(poly p, const ring r)
Definition p_polys.cc:3835
static BOOLEAN p_IsConstant(const poly p, const ring r)
Definition p_polys.h:1978
#define p_Test(p, r)
Definition p_polys.h:161
#define NUM
Definition readcf.cc:180
void PrintS(const char *s)
Definition reporter.cc:284
void rWrite(ring r, BOOLEAN details)
Definition ring.cc:227
static int rPar(const ring r)
(r->cf->P)
Definition ring.h:604
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition ring.h:597

◆ p_ChineseRemainder()

poly p_ChineseRemainder ( poly *  xx,
number x,
number q,
int  rl,
CFArray inv_cache,
const ring  R 
)

Definition at line 88 of file p_polys.cc.

89{
90 poly r,h,hh;
91 int j;
92 poly res_p=NULL;
93 loop
94 {
95 /* search the lead term */
96 r=NULL;
97 for(j=rl-1;j>=0;j--)
98 {
99 h=xx[j];
100 if ((h!=NULL)
101 &&((r==NULL)||(p_LmCmp(r,h,R)==-1)))
102 r=h;
103 }
104 /* nothing found -> return */
105 if (r==NULL) break;
106 /* create the monomial in h */
107 h=p_Head(r,R);
108 /* collect the coeffs in x[..]*/
109 for(j=rl-1;j>=0;j--)
110 {
111 hh=xx[j];
112 if ((hh!=NULL) && (p_LmCmp(h,hh,R)==0))
113 {
114 x[j]=pGetCoeff(hh);
116 xx[j]=hh;
117 }
118 else
119 x[j]=n_Init(0, R->cf);
120 }
122 for(j=rl-1;j>=0;j--)
123 {
124 x[j]=NULL; // n_Init(0...) takes no memory
125 }
126 if (n_IsZero(n,R->cf)) p_Delete(&h,R);
127 else
128 {
129 //Print("new mon:");pWrite(h);
130 p_SetCoeff(h,n,R);
131 pNext(h)=res_p;
132 res_p=h; // building res_p in reverse order!
133 }
134 }
136 p_Test(res_p, R);
137 return res_p;
138}
#define TRUE
Definition auxiliary.h:100
Variable x
Definition cfModGcd.cc:4090
static FORCE_INLINE BOOLEAN n_IsZero(number n, const coeffs r)
TRUE iff 'n' represents the zero element.
Definition coeffs.h:468
static FORCE_INLINE number n_ChineseRemainderSym(number *a, number *b, int rl, BOOLEAN sym, CFArray &inv_cache, const coeffs r)
Definition coeffs.h:757
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
Definition coeffs.h:539
int j
Definition facHensel.cc:110
STATIC_VAR Poly * h
Definition janet.cc:971
#define pNext(p)
Definition monomials.h:36
static number p_SetCoeff(poly p, number n, ring r)
Definition p_polys.h:412
static poly pReverse(poly p)
Definition p_polys.h:335
static poly p_Head(const poly p, const ring r)
copy the (leading) term of p
Definition p_polys.h:860
static int p_LmCmp(poly p, poly q, const ring r)
Definition p_polys.h:1594
static void p_Delete(poly *p, const ring r)
Definition p_polys.h:901
static poly p_LmFreeAndNext(poly p, ring)
Definition p_polys.h:711
#define R
Definition sirandom.c:27
#define loop
Definition structs.h:75

◆ p_Cleardenom()

poly p_Cleardenom ( poly  p,
const ring  r 
)

Definition at line 2849 of file p_polys.cc.

2850{
2851 if( p == NULL )
2852 return NULL;
2853
2854 assume( r != NULL );
2855 assume( r->cf != NULL );
2856 const coeffs C = r->cf;
2857
2858#if CLEARENUMERATORS
2859 if( 0 )
2860 {
2863 n_ClearContent(itr, C); // divide out the content
2864 p_Test(p, r); n_Test(pGetCoeff(p), C);
2865 assume(n_GreaterZero(pGetCoeff(p), C)); // ??
2866// if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2867 return p;
2868 }
2869#endif
2870
2871 number d, h;
2872
2873 if (rField_is_Ring(r))
2874 {
2875 if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2876 return p;
2877 }
2878
2880 {
2881 if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2882 return p;
2883 }
2884
2885 assume(p != NULL);
2886
2887 if(pNext(p)==NULL)
2888 {
2889 if (!TEST_OPT_CONTENTSB)
2890 p_SetCoeff(p,n_Init(1,C),r);
2891 else if(!n_GreaterZero(pGetCoeff(p),C))
2892 p = p_Neg(p,r);
2893 return p;
2894 }
2895
2896 assume(pNext(p)!=NULL);
2897 poly start=p;
2898
2899#if 0 && CLEARENUMERATORS
2900//CF: does not seem to work that well..
2901
2902 if( nCoeff_is_Q(C) || nCoeff_is_Q_a(C) )
2903 {
2906 n_ClearContent(itr, C); // divide out the content
2907 p_Test(p, r); n_Test(pGetCoeff(p), C);
2908 assume(n_GreaterZero(pGetCoeff(p), C)); // ??
2909// if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2910 return start;
2911 }
2912#endif
2913
2914 if(1)
2915 {
2916 // get lcm of all denominators ----------------------------------
2917 h = n_Init(1,C);
2918 while (p!=NULL)
2919 {
2922 n_Delete(&h,C);
2923 h=d;
2924 pIter(p);
2925 }
2926 /* h now contains the 1/lcm of all denominators */
2927 if(!n_IsOne(h,C))
2928 {
2929 // multiply by the lcm of all denominators
2930 p = start;
2931 while (p!=NULL)
2932 {
2933 d=n_Mult(h,pGetCoeff(p),C);
2934 n_Normalize(d,C);
2935 p_SetCoeff(p,d,r);
2936 pIter(p);
2937 }
2938 }
2939 n_Delete(&h,C);
2940 p=start;
2941
2942 p_ContentForGB(p,r);
2943#ifdef HAVE_RATGRING
2944 if (rIsRatGRing(r))
2945 {
2946 /* quick unit detection in the rational case is done in gr_nc_bba */
2947 p_ContentRat(p, r);
2948 start=p;
2949 }
2950#endif
2951 }
2952
2953 if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2954
2955 return start;
2956}
int p
Definition cfModGcd.cc:4086
This is a polynomial enumerator for simple iteration over coefficients of polynomials.
static FORCE_INLINE number n_Mult(number a, number b, const coeffs r)
return the product of 'a' and 'b', i.e., a*b
Definition coeffs.h:637
static FORCE_INLINE number n_NormalizeHelper(number a, number b, const coeffs r)
assume that r is a quotient field (otherwise, return 1) for arguments (a1/a2,b1/b2) return (lcm(a1,...
Definition coeffs.h:696
#define n_Test(a, r)
BOOLEAN n_Test(number a, const coeffs r)
Definition coeffs.h:713
static FORCE_INLINE BOOLEAN n_GreaterZero(number n, const coeffs r)
ordered fields: TRUE iff 'n' is positive; in Z/pZ: TRUE iff 0 < m <= roundedBelow(p/2),...
Definition coeffs.h:498
static FORCE_INLINE BOOLEAN nCoeff_is_Q(const coeffs r)
Definition coeffs.h:799
static FORCE_INLINE void n_ClearDenominators(ICoeffsEnumerator &numberCollectionEnumerator, number &d, const coeffs r)
(inplace) Clears denominators on a collection of numbers number d is the LCM of all the coefficient d...
Definition coeffs.h:928
static FORCE_INLINE BOOLEAN nCoeff_is_Q_a(const coeffs r)
Definition coeffs.h:878
static FORCE_INLINE void n_ClearContent(ICoeffsEnumerator &numberCollectionEnumerator, number &c, const coeffs r)
Computes the content and (inplace) divides it out on a collection of numbers number c is the content ...
Definition coeffs.h:921
static FORCE_INLINE void n_Normalize(number &n, const coeffs r)
inplace-normalization of n; produces some canonical representation of n;
Definition coeffs.h:579
static FORCE_INLINE BOOLEAN n_IsOne(number n, const coeffs r)
TRUE iff 'n' represents the one element.
Definition coeffs.h:472
#define pIter(p)
Definition monomials.h:37
#define TEST_OPT_INTSTRATEGY
Definition options.h:112
#define TEST_OPT_CONTENTSB
Definition options.h:129
void p_ContentRat(poly &ph, const ring r)
Definition p_polys.cc:1748
void p_ContentForGB(poly ph, const ring r)
Definition p_polys.cc:2359
static poly p_Neg(poly p, const ring r)
Definition p_polys.h:1107
static BOOLEAN rField_is_Zp(const ring r)
Definition ring.h:505
static BOOLEAN rIsRatGRing(const ring r)
Definition ring.h:432
#define rField_is_Ring(R)
Definition ring.h:490

◆ p_Cleardenom_n()

void p_Cleardenom_n ( poly  ph,
const ring  r,
number c 
)

Definition at line 2958 of file p_polys.cc.

2959{
2960 const coeffs C = r->cf;
2961 number d, h;
2962
2963 assume( ph != NULL );
2964
2965 poly p = ph;
2966
2967#if CLEARENUMERATORS
2968 if( 0 )
2969 {
2971
2972 n_ClearDenominators(itr, d, C); // multiply with common denom. d
2973 n_ClearContent(itr, h, C); // divide by the content h
2974
2975 c = n_Div(d, h, C); // d/h
2976
2977 n_Delete(&d, C);
2978 n_Delete(&h, C);
2979
2980 n_Test(c, C);
2981
2982 p_Test(ph, r); n_Test(pGetCoeff(ph), C);
2983 assume(n_GreaterZero(pGetCoeff(ph), C)); // ??
2984/*
2985 if(!n_GreaterZero(pGetCoeff(ph),C))
2986 {
2987 ph = p_Neg(ph,r);
2988 c = n_InpNeg(c, C);
2989 }
2990*/
2991 return;
2992 }
2993#endif
2994
2995
2996 if( pNext(p) == NULL )
2997 {
2999 {
3000 c=n_Invers(pGetCoeff(p), C);
3001 p_SetCoeff(p, n_Init(1, C), r);
3002 }
3003 else
3004 {
3005 c=n_Init(1,C);
3006 }
3007
3008 if(!n_GreaterZero(pGetCoeff(ph),C))
3009 {
3010 ph = p_Neg(ph,r);
3011 c = n_InpNeg(c, C);
3012 }
3013
3014 return;
3015 }
3016 if (TEST_OPT_CONTENTSB) { c=n_Init(1,C); return; }
3017
3018 assume( pNext(p) != NULL );
3019
3020#if CLEARENUMERATORS
3021 if( nCoeff_is_Q(C) || nCoeff_is_Q_a(C) )
3022 {
3024
3025 n_ClearDenominators(itr, d, C); // multiply with common denom. d
3026 n_ClearContent(itr, h, C); // divide by the content h
3027
3028 c = n_Div(d, h, C); // d/h
3029
3030 n_Delete(&d, C);
3031 n_Delete(&h, C);
3032
3033 n_Test(c, C);
3034
3035 p_Test(ph, r); n_Test(pGetCoeff(ph), C);
3036 assume(n_GreaterZero(pGetCoeff(ph), C)); // ??
3037/*
3038 if(!n_GreaterZero(pGetCoeff(ph),C))
3039 {
3040 ph = p_Neg(ph,r);
3041 c = n_InpNeg(c, C);
3042 }
3043*/
3044 return;
3045 }
3046#endif
3047
3048
3049
3050
3051 if(1)
3052 {
3053 h = n_Init(1,C);
3054 while (p!=NULL)
3055 {
3058 n_Delete(&h,C);
3059 h=d;
3060 pIter(p);
3061 }
3062 c=h;
3063 /* contains the 1/lcm of all denominators */
3064 if(!n_IsOne(h,C))
3065 {
3066 p = ph;
3067 while (p!=NULL)
3068 {
3069 /* should be: // NOTE: don't use ->coef!!!!
3070 * number hh;
3071 * nGetDenom(p->coef,&hh);
3072 * nMult(&h,&hh,&d);
3073 * nNormalize(d);
3074 * nDelete(&hh);
3075 * nMult(d,p->coef,&hh);
3076 * nDelete(&d);
3077 * nDelete(&(p->coef));
3078 * p->coef =hh;
3079 */
3080 d=n_Mult(h,pGetCoeff(p),C);
3081 n_Normalize(d,C);
3082 p_SetCoeff(p,d,r);
3083 pIter(p);
3084 }
3085 if (rField_is_Q_a(r))
3086 {
3087 loop
3088 {
3089 h = n_Init(1,C);
3090 p=ph;
3091 while (p!=NULL)
3092 {
3094 n_Delete(&h,C);
3095 h=d;
3096 pIter(p);
3097 }
3098 /* contains the 1/lcm of all denominators */
3099 if(!n_IsOne(h,C))
3100 {
3101 p = ph;
3102 while (p!=NULL)
3103 {
3104 /* should be: // NOTE: don't use ->coef!!!!
3105 * number hh;
3106 * nGetDenom(p->coef,&hh);
3107 * nMult(&h,&hh,&d);
3108 * nNormalize(d);
3109 * nDelete(&hh);
3110 * nMult(d,p->coef,&hh);
3111 * nDelete(&d);
3112 * nDelete(&(p->coef));
3113 * p->coef =hh;
3114 */
3115 d=n_Mult(h,pGetCoeff(p),C);
3116 n_Normalize(d,C);
3117 p_SetCoeff(p,d,r);
3118 pIter(p);
3119 }
3120 number t=n_Mult(c,h,C);
3121 n_Delete(&c,C);
3122 c=t;
3123 }
3124 else
3125 {
3126 break;
3127 }
3128 n_Delete(&h,C);
3129 }
3130 }
3131 }
3132 }
3133
3134 if(!n_GreaterZero(pGetCoeff(ph),C))
3135 {
3136 ph = p_Neg(ph,r);
3137 c = n_InpNeg(c, C);
3138 }
3139
3140}
static FORCE_INLINE number n_Invers(number a, const coeffs r)
return the multiplicative inverse of 'a'; raise an error if 'a' is not invertible
Definition coeffs.h:565
static FORCE_INLINE number n_InpNeg(number n, const coeffs r)
in-place negation of n MUST BE USED: n = n_InpNeg(n) (no copy is returned)
Definition coeffs.h:558
static FORCE_INLINE number n_Div(number a, number b, const coeffs r)
return the quotient of 'a' and 'b', i.e., a/b; raises an error if 'b' is not invertible in r exceptio...
Definition coeffs.h:616
static BOOLEAN rField_is_Q_a(const ring r)
Definition ring.h:544

◆ p_Compare()

int p_Compare ( const poly  a,
const poly  b,
const ring  R 
)

Definition at line 4946 of file p_polys.cc.

4947{
4948 int r=p_Cmp(a,b,R);
4949 if ((r==0)&&(a!=NULL))
4950 {
4951 number h=n_Sub(pGetCoeff(a),pGetCoeff(b),R->cf);
4952 /* compare lead coeffs */
4953 r = -1+n_IsZero(h,R->cf)+2*n_GreaterZero(h,R->cf); /* -1: <, 0:==, 1: > */
4954 n_Delete(&h,R->cf);
4955 }
4956 else if (a==NULL)
4957 {
4958 if (b==NULL)
4959 {
4960 /* compare 0, 0 */
4961 r=0;
4962 }
4963 else if(p_IsConstant(b,R))
4964 {
4965 /* compare 0, const */
4966 r = 1-2*n_GreaterZero(pGetCoeff(b),R->cf); /* -1: <, 1: > */
4967 }
4968 }
4969 else if (b==NULL)
4970 {
4971 if (p_IsConstant(a,R))
4972 {
4973 /* compare const, 0 */
4974 r = -1+2*n_GreaterZero(pGetCoeff(a),R->cf); /* -1: <, 1: > */
4975 }
4976 }
4977 return(r);
4978}
CanonicalForm b
Definition cfModGcd.cc:4111
static FORCE_INLINE number n_Sub(number a, number b, const coeffs r)
return the difference of 'a' and 'b', i.e., a-b
Definition coeffs.h:656
static int p_Cmp(poly p1, poly p2, ring r)
Definition p_polys.h:1741

◆ p_ComparePolys()

BOOLEAN p_ComparePolys ( poly  p1,
poly  p2,
const ring  r 
)

returns TRUE if p1 is a skalar multiple of p2 assume p1 != NULL and p2 != NULL

Definition at line 4626 of file p_polys.cc.

4627{
4628 number n,nn;
4629 pAssume(p1 != NULL && p2 != NULL);
4630
4631 if (!p_LmEqual(p1,p2,r)) //compare leading mons
4632 return FALSE;
4633 if ((pNext(p1)==NULL) && (pNext(p2)!=NULL))
4634 return FALSE;
4635 if ((pNext(p2)==NULL) && (pNext(p1)!=NULL))
4636 return FALSE;
4637 if (pLength(p1) != pLength(p2))
4638 return FALSE;
4639 #ifdef HAVE_RINGS
4640 if (rField_is_Ring(r))
4641 {
4642 if (!n_DivBy(pGetCoeff(p1), pGetCoeff(p2), r->cf)) return FALSE;
4643 }
4644 #endif
4645 n=n_Div(pGetCoeff(p1),pGetCoeff(p2),r->cf);
4646 while ((p1 != NULL) /*&& (p2 != NULL)*/)
4647 {
4648 if ( ! p_LmEqual(p1, p2,r))
4649 {
4650 n_Delete(&n, r->cf);
4651 return FALSE;
4652 }
4653 if (!n_Equal(pGetCoeff(p1), nn = n_Mult(pGetCoeff(p2),n, r->cf), r->cf))
4654 {
4655 n_Delete(&n, r->cf);
4656 n_Delete(&nn, r->cf);
4657 return FALSE;
4658 }
4659 n_Delete(&nn, r->cf);
4660 pIter(p1);
4661 pIter(p2);
4662 }
4663 n_Delete(&n, r->cf);
4664 return TRUE;
4665}
static FORCE_INLINE BOOLEAN n_DivBy(number a, number b, const coeffs r)
test whether 'a' is divisible 'b'; for r encoding a field: TRUE iff 'b' does not represent zero in Z:...
Definition coeffs.h:748
static FORCE_INLINE BOOLEAN n_Equal(number a, number b, const coeffs r)
TRUE iff 'a' and 'b' represent the same number; they may have different representations.
Definition coeffs.h:464
#define pAssume(cond)
Definition monomials.h:90
static int pLength(poly a)
Definition p_polys.h:190
#define p_LmEqual(p1, p2, r)
Definition p_polys.h:1737

◆ p_Content()

void p_Content ( poly  ph,
const ring  r 
)

Definition at line 2299 of file p_polys.cc.

2300{
2301 if (ph==NULL) return;
2302 const coeffs cf=r->cf;
2303 if (pNext(ph)==NULL)
2304 {
2305 p_SetCoeff(ph,n_Init(1,cf),r);
2306 return;
2307 }
2308 if ((cf->cfSubringGcd==ndGcd)
2309 || (cf->cfGcd==ndGcd)) /* trivial gcd*/
2310 return;
2311 number h;
2312 if ((rField_is_Q(r))
2313 || (rField_is_Q_a(r))
2314 || (rField_is_Zp_a)(r)
2315 || (rField_is_Z(r))
2316 )
2317 {
2318 h=p_InitContent(ph,r); /* first guess of a gcd of all coeffs */
2319 }
2320 else
2321 {
2323 }
2324 poly p;
2325 if(n_IsOne(h,cf))
2326 {
2327 goto content_finish;
2328 }
2329 p=ph;
2330 // take the SubringGcd of all coeffs
2331 while (p!=NULL)
2332 {
2335 n_Delete(&h,cf);
2336 h = d;
2337 if(n_IsOne(h,cf))
2338 {
2339 goto content_finish;
2340 }
2341 pIter(p);
2342 }
2343 // if found<>1, divide by it
2344 p = ph;
2345 while (p!=NULL)
2346 {
2348 p_SetCoeff(p,d,r);
2349 pIter(p);
2350 }
2352 n_Delete(&h,r->cf);
2353 // and last: check leading sign:
2354 if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2355}
CanonicalForm cf
Definition cfModGcd.cc:4091
static FORCE_INLINE number n_ExactDiv(number a, number b, const coeffs r)
assume that there is a canonical subring in cf and we know that division is possible for these a and ...
Definition coeffs.h:623
static FORCE_INLINE number n_SubringGcd(number a, number b, const coeffs r)
Definition coeffs.h:667
number ndGcd(number, number, const coeffs r)
Definition numbers.cc:187
number p_InitContent(poly ph, const ring r)
Definition p_polys.cc:2639
static BOOLEAN rField_is_Zp_a(const ring r)
Definition ring.h:534
static BOOLEAN rField_is_Z(const ring r)
Definition ring.h:514
static BOOLEAN rField_is_Q(const ring r)
Definition ring.h:511

◆ p_ContentForGB()

void p_ContentForGB ( poly  ph,
const ring  r 
)

Definition at line 2359 of file p_polys.cc.

2360{
2361 if(TEST_OPT_CONTENTSB) return;
2362 assume( ph != NULL );
2363
2364 assume( r != NULL ); assume( r->cf != NULL );
2365
2366
2367#if CLEARENUMERATORS
2368 if( 0 )
2369 {
2370 const coeffs C = r->cf;
2371 // experimentall (recursive enumerator treatment) of alg. Ext!
2373 n_ClearContent(itr, r->cf);
2374
2375 p_Test(ph, r); n_Test(pGetCoeff(ph), C);
2376 assume(n_GreaterZero(pGetCoeff(ph), C)); // ??
2377
2378 // if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2379 return;
2380 }
2381#endif
2382
2383
2384#ifdef HAVE_RINGS
2385 if (rField_is_Ring(r))
2386 {
2387 if (rField_has_Units(r))
2388 {
2389 number k = n_GetUnit(pGetCoeff(ph),r->cf);
2390 if (!n_IsOne(k,r->cf))
2391 {
2392 number tmpGMP = k;
2393 k = n_Invers(k,r->cf);
2394 n_Delete(&tmpGMP,r->cf);
2395 poly h = pNext(ph);
2396 p_SetCoeff(ph, n_Mult(pGetCoeff(ph), k,r->cf),r);
2397 while (h != NULL)
2398 {
2399 p_SetCoeff(h, n_Mult(pGetCoeff(h), k,r->cf),r);
2400 pIter(h);
2401 }
2402// assume( n_GreaterZero(pGetCoeff(ph),r->cf) );
2403// if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2404 }
2405 n_Delete(&k,r->cf);
2406 }
2407 return;
2408 }
2409#endif
2410 number h,d;
2411 poly p;
2412
2413 if(pNext(ph)==NULL)
2414 {
2415 p_SetCoeff(ph,n_Init(1,r->cf),r);
2416 }
2417 else
2418 {
2419 assume( pNext(ph) != NULL );
2420#if CLEARENUMERATORS
2421 if( nCoeff_is_Q(r->cf) )
2422 {
2423 // experimentall (recursive enumerator treatment) of alg. Ext!
2425 n_ClearContent(itr, r->cf);
2426
2427 p_Test(ph, r); n_Test(pGetCoeff(ph), r->cf);
2428 assume(n_GreaterZero(pGetCoeff(ph), r->cf)); // ??
2429
2430 // if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2431 return;
2432 }
2433#endif
2434
2435 n_Normalize(pGetCoeff(ph),r->cf);
2436 if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2437 if (rField_is_Q(r)||(getCoeffType(r->cf)==n_transExt)) // should not be used anymore if CLEARENUMERATORS is 1
2438 {
2439 h=p_InitContent(ph,r);
2440 p=ph;
2441 }
2442 else
2443 {
2444 h=n_Copy(pGetCoeff(ph),r->cf);
2445 p = pNext(ph);
2446 }
2447 while (p!=NULL)
2448 {
2449 n_Normalize(pGetCoeff(p),r->cf);
2450 d=n_SubringGcd(h,pGetCoeff(p),r->cf);
2451 n_Delete(&h,r->cf);
2452 h = d;
2453 if(n_IsOne(h,r->cf))
2454 {
2455 break;
2456 }
2457 pIter(p);
2458 }
2459 //number tmp;
2460 if(!n_IsOne(h,r->cf))
2461 {
2462 p = ph;
2463 while (p!=NULL)
2464 {
2465 //d = nDiv(pGetCoeff(p),h);
2466 //tmp = nExactDiv(pGetCoeff(p),h);
2467 //if (!nEqual(d,tmp))
2468 //{
2469 // StringSetS("** div0:");nWrite(pGetCoeff(p));StringAppendS("/");
2470 // nWrite(h);StringAppendS("=");nWrite(d);StringAppendS(" int:");
2471 // nWrite(tmp);Print(StringEndS("\n")); // NOTE/TODO: use StringAppendS("\n"); omFree(s);
2472 //}
2473 //nDelete(&tmp);
2474 d = n_ExactDiv(pGetCoeff(p),h,r->cf);
2475 p_SetCoeff(p,d,r);
2476 pIter(p);
2477 }
2478 }
2479 n_Delete(&h,r->cf);
2480 if (rField_is_Q_a(r))
2481 {
2482 // special handling for alg. ext.:
2483 if (getCoeffType(r->cf)==n_algExt)
2484 {
2485 h = n_Init(1, r->cf->extRing->cf);
2486 p=ph;
2487 while (p!=NULL)
2488 { // each monom: coeff in Q_a
2489 poly c_n_n=(poly)pGetCoeff(p);
2490 poly c_n=c_n_n;
2491 while (c_n!=NULL)
2492 { // each monom: coeff in Q
2493 d=n_NormalizeHelper(h,pGetCoeff(c_n),r->cf->extRing->cf);
2494 n_Delete(&h,r->cf->extRing->cf);
2495 h=d;
2496 pIter(c_n);
2497 }
2498 pIter(p);
2499 }
2500 /* h contains the 1/lcm of all denominators in c_n_n*/
2501 //n_Normalize(h,r->cf->extRing->cf);
2502 if(!n_IsOne(h,r->cf->extRing->cf))
2503 {
2504 p=ph;
2505 while (p!=NULL)
2506 { // each monom: coeff in Q_a
2507 poly c_n=(poly)pGetCoeff(p);
2508 while (c_n!=NULL)
2509 { // each monom: coeff in Q
2510 d=n_Mult(h,pGetCoeff(c_n),r->cf->extRing->cf);
2511 n_Normalize(d,r->cf->extRing->cf);
2512 n_Delete(&pGetCoeff(c_n),r->cf->extRing->cf);
2513 pGetCoeff(c_n)=d;
2514 pIter(c_n);
2515 }
2516 pIter(p);
2517 }
2518 }
2519 n_Delete(&h,r->cf->extRing->cf);
2520 }
2521 /*else
2522 {
2523 // special handling for rat. functions.:
2524 number hzz =NULL;
2525 p=ph;
2526 while (p!=NULL)
2527 { // each monom: coeff in Q_a (Z_a)
2528 fraction f=(fraction)pGetCoeff(p);
2529 poly c_n=NUM(f);
2530 if (hzz==NULL)
2531 {
2532 hzz=n_Copy(pGetCoeff(c_n),r->cf->extRing->cf);
2533 pIter(c_n);
2534 }
2535 while ((c_n!=NULL)&&(!n_IsOne(hzz,r->cf->extRing->cf)))
2536 { // each monom: coeff in Q (Z)
2537 d=n_Gcd(hzz,pGetCoeff(c_n),r->cf->extRing->cf);
2538 n_Delete(&hzz,r->cf->extRing->cf);
2539 hzz=d;
2540 pIter(c_n);
2541 }
2542 pIter(p);
2543 }
2544 // hzz contains the gcd of all numerators in f
2545 h=n_Invers(hzz,r->cf->extRing->cf);
2546 n_Delete(&hzz,r->cf->extRing->cf);
2547 n_Normalize(h,r->cf->extRing->cf);
2548 if(!n_IsOne(h,r->cf->extRing->cf))
2549 {
2550 p=ph;
2551 while (p!=NULL)
2552 { // each monom: coeff in Q_a (Z_a)
2553 fraction f=(fraction)pGetCoeff(p);
2554 NUM(f)=__p_Mult_nn(NUM(f),h,r->cf->extRing);
2555 p_Normalize(NUM(f),r->cf->extRing);
2556 pIter(p);
2557 }
2558 }
2559 n_Delete(&h,r->cf->extRing->cf);
2560 }*/
2561 }
2562 }
2563 if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2564}
int k
Definition cfEzgcd.cc:99
@ n_algExt
used for all algebraic extensions, i.e., the top-most extension in an extension tower is algebraic
Definition coeffs.h:35
@ n_transExt
used for all transcendental extensions, i.e., the top-most extension in an extension tower is transce...
Definition coeffs.h:38
static FORCE_INLINE number n_GetUnit(number n, const coeffs r)
in Z: 1 in Z/kZ (where k is not a prime): largest divisor of n (taken in Z) that is co-prime with k i...
Definition coeffs.h:535
static FORCE_INLINE n_coeffType getCoeffType(const coeffs r)
Returns the type of coeffs domain.
Definition coeffs.h:429
static BOOLEAN rField_has_Units(const ring r)
Definition ring.h:495

◆ p_ContentRat()

void p_ContentRat ( poly &  ph,
const ring  r 
)

Definition at line 1748 of file p_polys.cc.

1751{
1752 // init array of RatLeadCoeffs
1753 // poly p_GetCoeffRat(poly p, int ishift, ring r);
1754
1755 int len=pLength(ph);
1756 poly *C = (poly *)omAlloc0((len+1)*sizeof(poly)); //rat coeffs
1757 poly *LM = (poly *)omAlloc0((len+1)*sizeof(poly)); // rat lead terms
1758 int *D = (int *)omAlloc0((len+1)*sizeof(int)); //degrees of coeffs
1759 int *L = (int *)omAlloc0((len+1)*sizeof(int)); //lengths of coeffs
1760 int k = 0;
1761 poly p = p_Copy(ph, r); // ph will be needed below
1762 int mintdeg = p_Totaldegree(p, r);
1763 int minlen = len;
1764 int dd = 0; int i;
1765 int HasConstantCoef = 0;
1766 int is = r->real_var_start - 1;
1767 while (p!=NULL)
1768 {
1769 LM[k] = p_GetExp_k_n(p,1,is, r); // need LmRat instead of p_HeadRat(p, is, currRing); !
1770 C[k] = p_GetCoeffRat(p, is, r);
1771 D[k] = p_Totaldegree(C[k], r);
1772 mintdeg = si_min(mintdeg,D[k]);
1773 L[k] = pLength(C[k]);
1774 minlen = si_min(minlen,L[k]);
1775 if (p_IsConstant(C[k], r))
1776 {
1777 // C[k] = const, so the content will be numerical
1778 HasConstantCoef = 1;
1779 // smth like goto cleanup and return(pContent(p));
1780 }
1781 p_LmDeleteAndNextRat(&p, is, r);
1782 k++;
1783 }
1784
1785 // look for 1 element of minimal degree and of minimal length
1786 k--;
1787 poly d;
1788 int mindeglen = len;
1789 if (k<=0) // this poly is not a ratgring poly -> pContent
1790 {
1791 p_Delete(&C[0], r);
1792 p_Delete(&LM[0], r);
1793 p_ContentForGB(ph, r);
1794 goto cleanup;
1795 }
1796
1797 int pmindeglen;
1798 for(i=0; i<=k; i++)
1799 {
1800 if (D[i] == mintdeg)
1801 {
1802 if (L[i] < mindeglen)
1803 {
1804 mindeglen=L[i];
1805 pmindeglen = i;
1806 }
1807 }
1808 }
1809 d = p_Copy(C[pmindeglen], r);
1810 // there are dd>=1 mindeg elements
1811 // and pmideglen is the coordinate of one of the smallest among them
1812
1813 // poly g = singclap_gcd(p_Copy(p,r),p_Copy(q,r));
1814 // return naGcd(d,d2,currRing);
1815
1816 // adjoin pContentRat here?
1817 for(i=0; i<=k; i++)
1818 {
1819 d=singclap_gcd(d,p_Copy(C[i], r), r);
1820 if (p_Totaldegree(d, r)==0)
1821 {
1822 // cleanup, pContent, return
1823 p_Delete(&d, r);
1824 for(;k>=0;k--)
1825 {
1826 p_Delete(&C[k], r);
1827 p_Delete(&LM[k], r);
1828 }
1829 p_ContentForGB(ph, r);
1830 goto cleanup;
1831 }
1832 }
1833 for(i=0; i<=k; i++)
1834 {
1835 poly h=singclap_pdivide(C[i],d, r);
1836 p_Delete(&C[i], r);
1837 C[i]=h;
1838 }
1839
1840 // zusammensetzen,
1841 p=NULL; // just to be sure
1842 for(i=0; i<=k; i++)
1843 {
1844 p = p_Add_q(p, p_Mult_q(C[i],LM[i], r), r);
1845 C[i]=NULL; LM[i]=NULL;
1846 }
1847 p_Delete(&ph, r); // do not need it anymore
1848 ph = p;
1849 // aufraeumen, return
1850cleanup:
1851 omFree(C);
1852 omFree(LM);
1853 omFree(D);
1854 omFree(L);
1855}
poly singclap_pdivide(poly f, poly g, const ring r)
Definition clapsing.cc:624
#define D(A)
Definition gentable.cc:128
#define omFree(addr)
void p_LmDeleteAndNextRat(poly *p, int ishift, ring r)
Definition p_polys.cc:1704
poly p_GetCoeffRat(poly p, int ishift, ring r)
Definition p_polys.cc:1726
static poly p_Add_q(poly p, poly q, const ring r)
Definition p_polys.h:936
static poly p_Mult_q(poly p, poly q, const ring r)
Definition p_polys.h:1118
static poly p_GetExp_k_n(poly p, int l, int k, const ring r)
Definition p_polys.h:1386
static poly p_Copy(poly p, const ring r)
returns a copy of p
Definition p_polys.h:846
static long p_Totaldegree(poly p, const ring r)
Definition p_polys.h:1521
poly singclap_gcd(poly f, poly g, const ring r)
polynomial gcd via singclap_gcd_r resp. idSyzygies destroys f and g
Definition polys.cc:382

◆ p_CopyPowerProduct()

poly p_CopyPowerProduct ( const poly  p,
const ring  r 
)

like p_Head, but with coefficient 1

Definition at line 5030 of file p_polys.cc.

5031{
5032 if (p == NULL) return NULL;
5033 return p_CopyPowerProduct0(p,n_Init(1,r->cf),r);
5034}
poly p_CopyPowerProduct0(const poly p, number n, const ring r)
like p_Head, but with coefficient n
Definition p_polys.cc:5018

◆ p_CopyPowerProduct0()

poly p_CopyPowerProduct0 ( const poly  p,
number  n,
const ring  r 
)

like p_Head, but with coefficient n

Definition at line 5018 of file p_polys.cc.

5019{
5021 poly np;
5022 omTypeAllocBin(poly, np, r->PolyBin);
5023 p_SetRingOfLm(np, r);
5024 memcpy(np->exp, p->exp, r->ExpL_Size*sizeof(long));
5025 pNext(np) = NULL;
5026 pSetCoeff0(np, n);
5027 return np;
5028}
#define p_LmCheckPolyRing1(p, r)
Definition monomials.h:177
#define pSetCoeff0(p, n)
Definition monomials.h:59
#define p_SetRingOfLm(p, r)
Definition monomials.h:144
#define omTypeAllocBin(type, addr, bin)

◆ p_Deg()

long p_Deg ( poly  a,
const ring  r 
)

Definition at line 586 of file p_polys.cc.

587{
588 p_LmCheckPolyRing(a, r);
589// assume(p_GetOrder(a, r) == p_WTotaldegree(a, r)); // WRONG assume!
590 return p_GetOrder(a, r);
591}
BOOLEAN p_LmCheckPolyRing(poly p, ring r)
Definition pDebug.cc:123
static long p_GetOrder(poly p, ring r)
Definition p_polys.h:421

◆ p_DegW()

long p_DegW ( poly  p,
const int w,
const ring  R 
)

Definition at line 691 of file p_polys.cc.

692{
693 p_Test(p, R);
694 assume( w != NULL );
695 long r=-LONG_MAX;
696
697 while (p!=NULL)
698 {
699 long t=totaldegreeWecart_IV(p,R,w);
700 if (t>r) r=t;
701 pIter(p);
702 }
703 return r;
704}
const CanonicalForm & w
Definition facAbsFact.cc:51
long totaldegreeWecart_IV(poly p, ring r, const int *w)
Definition weight.cc:231

◆ p_DeleteComp()

void p_DeleteComp ( poly *  p,
int  k,
const ring  r 
)

Definition at line 3564 of file p_polys.cc.

3565{
3566 poly q;
3567 long unsigned kk=k;
3568
3569 while ((*p!=NULL) && (__p_GetComp(*p,r)==kk)) p_LmDelete(p,r);
3570 if (*p==NULL) return;
3571 q = *p;
3572 if (__p_GetComp(q,r)>kk)
3573 {
3574 p_SubComp(q,1,r);
3575 p_SetmComp(q,r);
3576 }
3577 while (pNext(q)!=NULL)
3578 {
3579 unsigned long c=__p_GetComp(pNext(q),r);
3580 if (/*__p_GetComp(pNext(q),r)*/c==kk)
3581 p_LmDelete(&(pNext(q)),r);
3582 else
3583 {
3584 pIter(q);
3585 if (/*__p_GetComp(q,r)*/c>kk)
3586 {
3587 p_SubComp(q,1,r);
3588 p_SetmComp(q,r);
3589 }
3590 }
3591 }
3592}
#define __p_GetComp(p, r)
Definition monomials.h:63
static void p_LmDelete(poly p, const ring r)
Definition p_polys.h:723
static unsigned long p_SubComp(poly p, unsigned long v, ring r)
Definition p_polys.h:453
#define p_SetmComp
Definition p_polys.h:244

◆ p_Diff()

poly p_Diff ( poly  a,
int  k,
const ring  r 
)

Definition at line 1902 of file p_polys.cc.

1903{
1904 poly res, f, last;
1905 number t;
1906
1907 last = res = NULL;
1908 while (a!=NULL)
1909 {
1910 if (p_GetExp(a,k,r)!=0)
1911 {
1912 f = p_LmInit(a,r);
1913 t = n_Init(p_GetExp(a,k,r),r->cf);
1914 pSetCoeff0(f,n_Mult(t,pGetCoeff(a),r->cf));
1915 n_Delete(&t,r->cf);
1916 if (n_IsZero(pGetCoeff(f),r->cf))
1917 p_LmDelete(&f,r);
1918 else
1919 {
1920 p_DecrExp(f,k,r);
1921 p_Setm(f,r);
1922 if (res==NULL)
1923 {
1924 res=last=f;
1925 }
1926 else
1927 {
1928 pNext(last)=f;
1929 last=f;
1930 }
1931 }
1932 }
1933 pIter(a);
1934 }
1935 return res;
1936}
FILE * f
Definition checklibs.c:9
CanonicalForm res
Definition facAbsFact.cc:60
STATIC_VAR poly last
Definition hdegree.cc:1137
static poly p_LmInit(poly p, const ring r)
Definition p_polys.h:1349
static void p_Setm(poly p, const ring r)
Definition p_polys.h:233
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent @Note: the integer VarOffset encodes:
Definition p_polys.h:469
static long p_DecrExp(poly p, int v, ring r)
Definition p_polys.h:598

◆ p_DiffOp()

poly p_DiffOp ( poly  a,
poly  b,
BOOLEAN  multiply,
const ring  r 
)

Definition at line 1977 of file p_polys.cc.

1978{
1979 poly result=NULL;
1980 poly h;
1981 for(;a!=NULL;pIter(a))
1982 {
1983 for(h=b;h!=NULL;pIter(h))
1984 {
1985 result=p_Add_q(result,p_DiffOpM(a,h,multiply,r),r);
1986 }
1987 }
1988 return result;
1989}
return result
static poly p_DiffOpM(poly a, poly b, BOOLEAN multiply, const ring r)
Definition p_polys.cc:1938

◆ p_DiffOpM()

static poly p_DiffOpM ( poly  a,
poly  b,
BOOLEAN  multiply,
const ring  r 
)
static

Definition at line 1938 of file p_polys.cc.

1939{
1940 int i,j,s;
1941 number n,h,hh;
1942 poly p=p_One(r);
1943 n=n_Mult(pGetCoeff(a),pGetCoeff(b),r->cf);
1944 for(i=rVar(r);i>0;i--)
1945 {
1946 s=p_GetExp(b,i,r);
1947 if (s<p_GetExp(a,i,r))
1948 {
1949 n_Delete(&n,r->cf);
1950 p_LmDelete(&p,r);
1951 return NULL;
1952 }
1953 if (multiply)
1954 {
1955 for(j=p_GetExp(a,i,r); j>0;j--)
1956 {
1957 h = n_Init(s,r->cf);
1958 hh=n_Mult(n,h,r->cf);
1959 n_Delete(&h,r->cf);
1960 n_Delete(&n,r->cf);
1961 n=hh;
1962 s--;
1963 }
1964 p_SetExp(p,i,s,r);
1965 }
1966 else
1967 {
1968 p_SetExp(p,i,s-p_GetExp(a,i,r),r);
1969 }
1970 }
1971 p_Setm(p,r);
1972 /*if (multiply)*/ p_SetCoeff(p,n,r);
1973 if (n_IsZero(n,r->cf)) p=p_LmDeleteAndNext(p,r); // return NULL as p is a monomial
1974 return p;
1975}
poly p_One(const ring r)
Definition p_polys.cc:1314
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent @Note: VarOffset encodes the position in p->exp
Definition p_polys.h:488
static poly p_LmDeleteAndNext(poly p, const ring r)
Definition p_polys.h:755

◆ p_Div_mm()

poly p_Div_mm ( poly  p,
const poly  m,
const ring  r 
)

divide polynomial by monomial

Definition at line 1542 of file p_polys.cc.

1543{
1544 p_Test(p, r);
1545 p_Test(m, r);
1546 poly result = p;
1547 poly prev = NULL;
1548 number n=pGetCoeff(m);
1549 while (p!=NULL)
1550 {
1551 number nc = n_Div(pGetCoeff(p),n,r->cf);
1552 n_Normalize(nc,r->cf);
1553 if (!n_IsZero(nc,r->cf))
1554 {
1555 p_SetCoeff(p,nc,r);
1556 prev=p;
1557 p_ExpVectorSub(p,m,r);
1558 pIter(p);
1559 }
1560 else
1561 {
1562 if (prev==NULL)
1563 {
1564 p_LmDelete(&result,r);
1565 p=result;
1566 }
1567 else
1568 {
1569 p_LmDelete(&pNext(prev),r);
1570 p=pNext(prev);
1571 }
1572 }
1573 }
1574 p_Test(result,r);
1575 return(result);
1576}
int m
Definition cfEzgcd.cc:128
static void p_ExpVectorSub(poly p1, poly p2, const ring r)
Definition p_polys.h:1454

◆ p_Div_nn()

poly p_Div_nn ( poly  p,
const number  n,
const ring  r 
)

Definition at line 1506 of file p_polys.cc.

1507{
1508 pAssume(!n_IsZero(n,r->cf));
1509 p_Test(p, r);
1510 poly result = p;
1511 poly prev = NULL;
1512 if (!n_IsOne(n,r->cf))
1513 {
1514 while (p!=NULL)
1515 {
1516 number nc = n_Div(pGetCoeff(p),n,r->cf);
1517 if (!n_IsZero(nc,r->cf))
1518 {
1519 p_SetCoeff(p,nc,r);
1520 prev=p;
1521 pIter(p);
1522 }
1523 else
1524 {
1525 if (prev==NULL)
1526 {
1527 p_LmDelete(&result,r);
1528 p=result;
1529 }
1530 else
1531 {
1532 p_LmDelete(&pNext(prev),r);
1533 p=pNext(prev);
1534 }
1535 }
1536 }
1537 p_Test(result,r);
1538 }
1539 return(result);
1540}

◆ p_DivideM()

poly p_DivideM ( poly  a,
poly  b,
const ring  r 
)

Definition at line 1582 of file p_polys.cc.

1583{
1584 if (a==NULL) { p_Delete(&b,r); return NULL; }
1585 poly result=a;
1586
1587 if(!p_IsConstant(b,r))
1588 {
1589 if (rIsNCRing(r))
1590 {
1591 WerrorS("p_DivideM not implemented for non-commuative rings");
1592 return NULL;
1593 }
1594 poly prev=NULL;
1595 while (a!=NULL)
1596 {
1597 if (p_DivisibleBy(b,a,r))
1598 {
1599 p_ExpVectorSub(a,b,r);
1600 prev=a;
1601 pIter(a);
1602 }
1603 else
1604 {
1605 if (prev==NULL)
1606 {
1607 p_LmDelete(&result,r);
1608 a=result;
1609 }
1610 else
1611 {
1612 p_LmDelete(&pNext(prev),r);
1613 a=pNext(prev);
1614 }
1615 }
1616 }
1617 }
1618 if (result!=NULL)
1619 {
1621 //if ((!rField_is_Ring(r)) || n_IsUnit(inv,r->cf))
1622 if (rField_is_Zp(r))
1623 {
1624 inv = n_Invers(inv,r->cf);
1626 n_Delete(&inv, r->cf);
1627 }
1628 else
1629 {
1631 }
1632 }
1633 p_Delete(&b, r);
1634 return result;
1635}
static BOOLEAN p_DivisibleBy(poly a, poly b, const ring r)
Definition p_polys.h:1914
#define __p_Mult_nn(p, n, r)
Definition p_polys.h:971
static BOOLEAN rIsNCRing(const ring r)
Definition ring.h:426

◆ p_DivisibleByRingCase()

BOOLEAN p_DivisibleByRingCase ( poly  f,
poly  g,
const ring  r 
)

divisibility check over ground ring (which may contain zero divisors); TRUE iff LT(f) divides LT(g), i.e., LT(f)*c*m = LT(g), for some coefficient c and some monomial m; does not take components into account

Definition at line 1646 of file p_polys.cc.

1647{
1648 int exponent;
1649 for(int i = (int)rVar(r); i>0; i--)
1650 {
1651 exponent = p_GetExp(g, i, r) - p_GetExp(f, i, r);
1652 if (exponent < 0) return FALSE;
1653 }
1654 return n_DivBy(pGetCoeff(g), pGetCoeff(f), r->cf);
1655}
g
Definition cfModGcd.cc:4098
#define exponent

◆ p_EqualPolys() [1/2]

BOOLEAN p_EqualPolys ( poly  p1,
poly  p2,
const ring  r 
)

Definition at line 4562 of file p_polys.cc.

4563{
4564 while ((p1 != NULL) && (p2 != NULL))
4565 {
4566 if (! p_LmEqual(p1, p2,r))
4567 return FALSE;
4568 if (! n_Equal(p_GetCoeff(p1,r), p_GetCoeff(p2,r),r->cf ))
4569 return FALSE;
4570 pIter(p1);
4571 pIter(p2);
4572 }
4573 return (p1==p2);
4574}
#define p_GetCoeff(p, r)
Definition monomials.h:50

◆ p_EqualPolys() [2/2]

BOOLEAN p_EqualPolys ( poly  p1,
poly  p2,
const ring  r1,
const ring  r2 
)

same as the usual p_EqualPolys for polys belonging to equal rings

Definition at line 4600 of file p_polys.cc.

4601{
4602 assume( r1 == r2 || rSamePolyRep(r1, r2) ); // will be used in rEqual!
4603 assume( r1->cf == r2->cf );
4604
4605 while ((p1 != NULL) && (p2 != NULL))
4606 {
4607 // returns 1 if ExpVector(p)==ExpVector(q): does not compare numbers !!
4608 // #define p_LmEqual(p1, p2, r) p_ExpVectorEqual(p1, p2, r)
4609
4610 if (! p_ExpVectorEqual(p1, p2, r1, r2))
4611 return FALSE;
4612
4613 if (! n_Equal(p_GetCoeff(p1,r1), p_GetCoeff(p2,r2), r1->cf ))
4614 return FALSE;
4615
4616 pIter(p1);
4617 pIter(p2);
4618 }
4619 return (p1==p2);
4620}
static BOOLEAN p_ExpVectorEqual(poly p1, poly p2, const ring r1, const ring r2)
Definition p_polys.cc:4576
BOOLEAN rSamePolyRep(ring r1, ring r2)
returns TRUE, if r1 and r2 represents the monomials in the same way FALSE, otherwise this is an analo...
Definition ring.cc:1802

◆ p_ExpVectorEqual()

static BOOLEAN p_ExpVectorEqual ( poly  p1,
poly  p2,
const ring  r1,
const ring  r2 
)
inlinestatic

Definition at line 4576 of file p_polys.cc.

4577{
4578 assume( r1 == r2 || rSamePolyRep(r1, r2) );
4579
4582
4583 int i = r1->ExpL_Size;
4584
4585 assume( r1->ExpL_Size == r2->ExpL_Size );
4586
4587 unsigned long *ep = p1->exp;
4588 unsigned long *eq = p2->exp;
4589
4590 do
4591 {
4592 i--;
4593 if (ep[i] != eq[i]) return FALSE;
4594 }
4595 while (i);
4596
4597 return TRUE;
4598}

◆ p_Farey()

poly p_Farey ( poly  p,
number  N,
const ring  r 
)

Definition at line 54 of file p_polys.cc.

55{
56 poly h=p_Copy(p,r);
57 poly hh=h;
58 while(h!=NULL)
59 {
61 pSetCoeff0(h,n_Farey(c,N,r->cf));
62 n_Delete(&c,r->cf);
63 pIter(h);
64 }
65 while((hh!=NULL)&&(n_IsZero(pGetCoeff(hh),r->cf)))
66 {
67 p_LmDelete(&hh,r);
68 }
69 h=hh;
70 while((h!=NULL) && (pNext(h)!=NULL))
71 {
72 if(n_IsZero(pGetCoeff(pNext(h)),r->cf))
73 {
74 p_LmDelete(&pNext(h),r);
75 }
76 else pIter(h);
77 }
78 return hh;
79}
const CanonicalForm CFMap CFMap & N
Definition cfEzgcd.cc:56
static FORCE_INLINE number n_Farey(number a, number b, const coeffs r)
Definition coeffs.h:760

◆ p_GcdMon()

poly p_GcdMon ( poly  f,
poly  g,
const ring  r 
)

polynomial gcd for f=mon

Definition at line 4980 of file p_polys.cc.

4981{
4982 assume(f!=NULL);
4983 assume(g!=NULL);
4984 assume(pNext(f)==NULL);
4985 poly G=p_Head(f,r);
4986 poly h=g;
4987 int *mf=(int*)omAlloc((r->N+1)*sizeof(int));
4988 p_GetExpV(f,mf,r);
4989 int *mh=(int*)omAlloc((r->N+1)*sizeof(int));
4992 loop
4993 {
4994 if (h==NULL) break;
4995 if(!one_coeff)
4996 {
4998 one_coeff=n_IsOne(n,r->cf);
4999 p_SetCoeff(G,n,r);
5000 }
5001 p_GetExpV(h,mh,r);
5003 for(unsigned j=r->N;j!=0;j--)
5004 {
5005 if (mh[j]<mf[j]) mf[j]=mh[j];
5006 if (mf[j]>0) const_mon=FALSE;
5007 }
5008 if (one_coeff && const_mon) break;
5009 pIter(h);
5010 }
5011 mf[0]=0;
5012 p_SetExpV(G,mf,r); // included is p_SetComp, p_Setm
5013 omFreeSize(mf,(r->N+1)*sizeof(int));
5014 omFreeSize(mh,(r->N+1)*sizeof(int));
5015 return G;
5016}
int BOOLEAN
Definition auxiliary.h:87
STATIC_VAR TreeM * G
Definition janet.cc:31
#define omAlloc(size)
static void p_SetExpV(poly p, int *ev, const ring r)
Definition p_polys.h:1558
static void p_GetExpV(poly p, int *ev, const ring r)
Definition p_polys.h:1534

◆ p_GetCoeffRat()

poly p_GetCoeffRat ( poly  p,
int  ishift,
ring  r 
)

Definition at line 1726 of file p_polys.cc.

1727{
1728 poly q = pNext(p);
1729 poly res; // = p_Head(p,r);
1730 res = p_GetExp_k_n(p, ishift+1, r->N, r); // does pSetm internally
1731 p_SetCoeff(res,n_Copy(p_GetCoeff(p,r),r),r);
1732 poly s;
1733 long cmp = p_GetComp(p, r);
1734 while ( (q!= NULL) && (p_Comp_k_n(p, q, ishift+1, r)) && (p_GetComp(q, r) == cmp) )
1735 {
1736 s = p_GetExp_k_n(q, ishift+1, r->N, r);
1737 p_SetCoeff(s,n_Copy(p_GetCoeff(q,r),r),r);
1738 res = p_Add_q(res,s,r);
1739 q = pNext(q);
1740 }
1741 cmp = 0;
1742 p_SetCompP(res,cmp,r);
1743 return res;
1744}
#define p_GetComp(p, r)
Definition monomials.h:64
static int p_Comp_k_n(poly a, poly b, int k, ring r)
Definition p_polys.h:640
static void p_SetCompP(poly p, int i, ring r)
Definition p_polys.h:254

◆ p_GetMaxExpL()

unsigned long p_GetMaxExpL ( poly  p,
const ring  r,
unsigned long  l_max 
)

return the maximal exponent of p in form of the maximal long var

Definition at line 1176 of file p_polys.cc.

1177{
1178 unsigned long l_p, divmask = r->divmask;
1179 int i;
1180
1181 while (p != NULL)
1182 {
1183 l_p = p->exp[r->VarL_Offset[0]];
1184 if (l_p > l_max ||
1185 (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask)))
1187 for (i=1; i<r->VarL_Size; i++)
1188 {
1189 l_p = p->exp[r->VarL_Offset[i]];
1190 // do the divisibility trick to find out whether l has an exponent
1191 if (l_p > l_max ||
1192 (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask)))
1194 }
1195 pIter(p);
1196 }
1197 return l_max;
1198}
static unsigned long p_GetMaxExpL2(unsigned long l1, unsigned long l2, const ring r, unsigned long number_of_exp)
Definition p_polys.cc:1108

◆ p_GetMaxExpL2() [1/2]

static unsigned long p_GetMaxExpL2 ( unsigned long  l1,
unsigned long  l2,
const ring  r 
)
inlinestatic

Definition at line 1134 of file p_polys.cc.

1135{
1136 return p_GetMaxExpL2(l1, l2, r, r->ExpPerLong);
1137}

◆ p_GetMaxExpL2() [2/2]

static unsigned long p_GetMaxExpL2 ( unsigned long  l1,
unsigned long  l2,
const ring  r,
unsigned long  number_of_exp 
)
inlinestatic

Definition at line 1108 of file p_polys.cc.

1110{
1111 const unsigned long bitmask = r->bitmask;
1112 unsigned long ml1 = l1 & bitmask;
1113 unsigned long ml2 = l2 & bitmask;
1114 unsigned long max = (ml1 > ml2 ? ml1 : ml2);
1115 unsigned long j = number_of_exp - 1;
1116
1117 if (j > 0)
1118 {
1119 unsigned long mask = bitmask << r->BitsPerExp;
1120 while (1)
1121 {
1122 ml1 = l1 & mask;
1123 ml2 = l2 & mask;
1124 max |= ((ml1 > ml2 ? ml1 : ml2) & mask);
1125 j--;
1126 if (j == 0) break;
1127 mask = mask << r->BitsPerExp;
1128 }
1129 }
1130 return max;
1131}
static int max(int a, int b)
Definition fast_mult.cc:264

◆ p_GetMaxExpP()

poly p_GetMaxExpP ( poly  p,
const ring  r 
)

return monomial r such that GetExp(r,i) is maximum of all monomials in p; coeff == 0, next == NULL, ord is not set

Definition at line 1139 of file p_polys.cc.

1140{
1141 p_CheckPolyRing(p, r);
1142 if (p == NULL) return p_Init(r);
1143 poly max = p_LmInit(p, r);
1144 pIter(p);
1145 if (p == NULL) return max;
1146 int i, offset;
1147 unsigned long l_p, l_max;
1148 unsigned long divmask = r->divmask;
1149
1150 do
1151 {
1152 offset = r->VarL_Offset[0];
1153 l_p = p->exp[offset];
1154 l_max = max->exp[offset];
1155 // do the divisibility trick to find out whether l has an exponent
1156 if (l_p > l_max ||
1157 (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask)))
1158 max->exp[offset] = p_GetMaxExpL2(l_max, l_p, r);
1159
1160 for (i=1; i<r->VarL_Size; i++)
1161 {
1162 offset = r->VarL_Offset[i];
1163 l_p = p->exp[offset];
1164 l_max = max->exp[offset];
1165 // do the divisibility trick to find out whether l has an exponent
1166 if (l_p > l_max ||
1167 (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask)))
1168 max->exp[offset] = p_GetMaxExpL2(l_max, l_p, r);
1169 }
1170 pIter(p);
1171 }
1172 while (p != NULL);
1173 return max;
1174}
STATIC_VAR int offset
Definition janet.cc:29
BOOLEAN p_CheckPolyRing(poly p, ring r)
Definition pDebug.cc:115
static poly p_Init(const ring r, omBin bin)
Definition p_polys.h:1334

◆ p_GetSetmProc()

p_SetmProc p_GetSetmProc ( const ring  r)

Definition at line 559 of file p_polys.cc.

560{
561 // covers lp, rp, ls,
562 if (r->typ == NULL) return p_Setm_Dummy;
563
564 if (r->OrdSize == 1)
565 {
566 if (r->typ[0].ord_typ == ro_dp &&
567 r->typ[0].data.dp.start == 1 &&
568 r->typ[0].data.dp.end == r->N &&
569 r->typ[0].data.dp.place == r->pOrdIndex)
570 return p_Setm_TotalDegree;
571 if (r->typ[0].ord_typ == ro_wp &&
572 r->typ[0].data.wp.start == 1 &&
573 r->typ[0].data.wp.end == r->N &&
574 r->typ[0].data.wp.place == r->pOrdIndex &&
575 r->typ[0].data.wp.weights == r->firstwv)
577 }
578 return p_Setm_General;
579}
void p_Setm_WFirstTotalDegree(poly p, const ring r)
Definition p_polys.cc:553
void p_Setm_Dummy(poly p, const ring r)
Definition p_polys.cc:540
void p_Setm_TotalDegree(poly p, const ring r)
Definition p_polys.cc:546
void p_Setm_General(poly p, const ring r)
Definition p_polys.cc:158
@ ro_dp
Definition ring.h:52
@ ro_wp
Definition ring.h:53

◆ p_GetShortExpVector()

unsigned long p_GetShortExpVector ( const poly  p,
const ring  r 
)

Definition at line 4830 of file p_polys.cc.

4831{
4832 assume(p != NULL);
4833 unsigned long ev = 0; // short exponent vector
4834 unsigned int n = BIT_SIZEOF_LONG / r->N; // number of bits per exp
4835 unsigned int m1; // highest bit which is filled with (n+1)
4836 unsigned int i=0;
4837 int j=1;
4838
4839 if (n == 0)
4840 {
4841 if (r->N <2*BIT_SIZEOF_LONG)
4842 {
4843 n=1;
4844 m1=0;
4845 }
4846 else
4847 {
4848 for (; j<=r->N; j++)
4849 {
4850 if (p_GetExp(p,j,r) > 0) i++;
4851 if (i == BIT_SIZEOF_LONG) break;
4852 }
4853 if (i>0)
4854 ev = ~(0UL) >> (BIT_SIZEOF_LONG - i);
4855 return ev;
4856 }
4857 }
4858 else
4859 {
4860 m1 = (n+1)*(BIT_SIZEOF_LONG - n*r->N);
4861 }
4862
4863 n++;
4864 while (i<m1)
4865 {
4866 ev |= GetBitFields(p_GetExp(p, j,r), i, n);
4867 i += n;
4868 j++;
4869 }
4870
4871 n--;
4872 while (i<BIT_SIZEOF_LONG)
4873 {
4874 ev |= GetBitFields(p_GetExp(p, j,r), i, n);
4875 i += n;
4876 j++;
4877 }
4878 return ev;
4879}
static unsigned long GetBitFields(const long e, const unsigned int s, const unsigned int n)
Definition p_polys.cc:4798

◆ p_GetShortExpVector0()

unsigned long p_GetShortExpVector0 ( const poly  p,
const ring  r 
)

Definition at line 4881 of file p_polys.cc.

4882{
4883 assume(p != NULL);
4884 assume(r->N >=BIT_SIZEOF_LONG);
4885 unsigned long ev = 0; // short exponent vector
4886
4887 for (int j=BIT_SIZEOF_LONG; j>0; j--)
4888 {
4889 if (p_GetExp(p, j,r)>0)
4890 ev |= Sy_bitL(j-1);
4891 }
4892 return ev;
4893}

◆ p_GetShortExpVector1()

unsigned long p_GetShortExpVector1 ( const poly  p,
const ring  r 
)

Definition at line 4896 of file p_polys.cc.

4897{
4898 assume(p != NULL);
4899 assume(r->N <BIT_SIZEOF_LONG);
4900 assume(2*r->N >=BIT_SIZEOF_LONG);
4901 unsigned long ev = 0; // short exponent vector
4902 int rest=r->N;
4903 int e;
4904 // 2 bits per exp
4905 int j=r->N;
4906 for (; j>BIT_SIZEOF_LONG-r->N; j--)
4907 {
4908 if ((e=p_GetExp(p, j,r))>0)
4909 {
4910 ev |= Sy_bitL(j-1);
4911 if (e>1)
4912 {
4913 ev|=Sy_bitL(rest+j-1);
4914 }
4915 }
4916 }
4917 // 1 bit per exp
4918 for (; j>0; j--)
4919 {
4920 if (p_GetExp(p, j,r)>0)
4921 {
4922 ev |= Sy_bitL(j-1);
4923 }
4924 }
4925 return ev;
4926}

◆ p_GetVariables()

int p_GetVariables ( poly  p,
int e,
const ring  r 
)

set entry e[i] to 1 if var(i) occurs in p, ignore var(j) if e[j]>0 return #(e[i]>0)

Definition at line 1268 of file p_polys.cc.

1269{
1270 int i;
1271 int n=0;
1272 while(p!=NULL)
1273 {
1274 n=0;
1275 for(i=r->N; i>0; i--)
1276 {
1277 if(e[i]==0)
1278 {
1279 if (p_GetExp(p,i,r)>0)
1280 {
1281 e[i]=1;
1282 n++;
1283 }
1284 }
1285 else
1286 n++;
1287 }
1288 if (n==r->N) break;
1289 pIter(p);
1290 }
1291 return n;
1292}

◆ p_HasNotCF()

BOOLEAN p_HasNotCF ( poly  p1,
poly  p2,
const ring  r 
)

Definition at line 1330 of file p_polys.cc.

1331{
1332
1333 if (p_GetComp(p1,r) > 0 || p_GetComp(p2,r) > 0)
1334 return FALSE;
1335 int i = rVar(r);
1336 loop
1337 {
1338 if ((p_GetExp(p1, i, r) > 0) && (p_GetExp(p2, i, r) > 0))
1339 return FALSE;
1340 i--;
1341 if (i == 0)
1342 return TRUE;
1343 }
1344}

◆ p_HasNotCFRing()

BOOLEAN p_HasNotCFRing ( poly  p1,
poly  p2,
const ring  r 
)

Definition at line 1346 of file p_polys.cc.

1347{
1348
1349 if (p_GetComp(p1,r) > 0 || p_GetComp(p2,r) > 0)
1350 return FALSE;
1351 int i = rVar(r);
1352 loop
1353 {
1354 if ((p_GetExp(p1, i, r) > 0) && (p_GetExp(p2, i, r) > 0))
1355 return FALSE;
1356 i--;
1357 if (i == 0) {
1358 if (n_DivBy(pGetCoeff(p1), pGetCoeff(p2), r->cf) ||
1359 n_DivBy(pGetCoeff(p2), pGetCoeff(p1), r->cf)) {
1360 return FALSE;
1361 } else {
1362 return TRUE;
1363 }
1364 }
1365 }
1366}

◆ p_Head0()

poly p_Head0 ( const poly  p,
const ring  r 
)

like p_Head, but allow NULL coeff

Definition at line 5036 of file p_polys.cc.

5037{
5038 if (p==NULL) return NULL;
5039 if (pGetCoeff(p)==NULL) return p_CopyPowerProduct0(p,NULL,r);
5040 return p_Head(p,r);
5041}

◆ p_Homogen()

poly p_Homogen ( poly  p,
int  varnum,
const ring  r 
)

Definition at line 3274 of file p_polys.cc.

3275{
3276 pFDegProc deg;
3277 if (r->pLexOrder && (r->order[0]==ringorder_lp))
3278 deg=p_Totaldegree;
3279 else
3280 deg=r->pFDeg;
3281
3282 poly q=NULL, qn;
3283 int o,ii;
3284 sBucket_pt bp;
3285
3286 if (p!=NULL)
3287 {
3288 if ((varnum < 1) || (varnum > rVar(r)))
3289 {
3290 return NULL;
3291 }
3292 o=deg(p,r);
3293 q=pNext(p);
3294 while (q != NULL)
3295 {
3296 ii=deg(q,r);
3297 if (ii>o) o=ii;
3298 pIter(q);
3299 }
3300 q = p_Copy(p,r);
3301 bp = sBucketCreate(r);
3302 while (q != NULL)
3303 {
3304 ii = o-deg(q,r);
3305 if (ii!=0)
3306 {
3307 p_AddExp(q,varnum, (long)ii,r);
3308 p_Setm(q,r);
3309 }
3310 qn = pNext(q);
3311 pNext(q) = NULL;
3312 sBucket_Add_m(bp, q);
3313 q = qn;
3314 }
3315 sBucketDestroyAdd(bp, &q, &ii);
3316 }
3317 return q;
3318}
static long p_AddExp(poly p, int v, long ee, ring r)
Definition p_polys.h:606
long(* pFDegProc)(poly p, ring r)
Definition ring.h:38
@ ringorder_lp
Definition ring.h:77
void sBucket_Add_m(sBucket_pt bucket, poly p)
Definition sbuckets.cc:173
sBucket_pt sBucketCreate(const ring r)
Definition sbuckets.cc:96
void sBucketDestroyAdd(sBucket_pt bucket, poly *p, int *length)
Definition sbuckets.h:68

◆ p_InitContent()

number p_InitContent ( poly  ph,
const ring  r 
)

Definition at line 2639 of file p_polys.cc.

2642{
2644 assume(ph!=NULL);
2645 assume(pNext(ph)!=NULL);
2646 assume(rField_is_Q(r));
2647 if (pNext(pNext(ph))==NULL)
2648 {
2649 return n_GetNumerator(pGetCoeff(pNext(ph)),r->cf);
2650 }
2651 poly p=ph;
2653 pIter(p);
2655 pIter(p);
2656 number d;
2657 number t;
2658 loop
2659 {
2660 nlNormalize(pGetCoeff(p),r->cf);
2661 t=n_GetNumerator(pGetCoeff(p),r->cf);
2662 if (nlGreaterZero(t,r->cf))
2663 d=nlAdd(n1,t,r->cf);
2664 else
2665 d=nlSub(n1,t,r->cf);
2666 nlDelete(&t,r->cf);
2667 nlDelete(&n1,r->cf);
2668 n1=d;
2669 pIter(p);
2670 if (p==NULL) break;
2671 nlNormalize(pGetCoeff(p),r->cf);
2672 t=n_GetNumerator(pGetCoeff(p),r->cf);
2673 if (nlGreaterZero(t,r->cf))
2674 d=nlAdd(n2,t,r->cf);
2675 else
2676 d=nlSub(n2,t,r->cf);
2677 nlDelete(&t,r->cf);
2678 nlDelete(&n2,r->cf);
2679 n2=d;
2680 pIter(p);
2681 if (p==NULL) break;
2682 }
2683 d=nlGcd(n1,n2,r->cf);
2684 nlDelete(&n1,r->cf);
2685 nlDelete(&n2,r->cf);
2686 return d;
2687}
2688#else
2689{
2690 /* ph has al least 2 terms */
2691 number d=pGetCoeff(ph);
2692 int s=n_Size(d,r->cf);
2693 pIter(ph);
2695 int s2=n_Size(d2,r->cf);
2696 pIter(ph);
2697 if (ph==NULL)
2698 {
2699 if (s<s2) return n_Copy(d,r->cf);
2700 else return n_Copy(d2,r->cf);
2701 }
2702 do
2703 {
2705 int ns=n_Size(nd,r->cf);
2706 if (ns<=2)
2707 {
2708 s2=s;
2709 d2=d;
2710 d=nd;
2711 s=ns;
2712 break;
2713 }
2714 else if (ns<s)
2715 {
2716 s2=s;
2717 d2=d;
2718 d=nd;
2719 s=ns;
2720 }
2721 pIter(ph);
2722 }
2723 while(ph!=NULL);
2724 return n_SubringGcd(d,d2,r->cf);
2725}
static FORCE_INLINE int n_Size(number n, const coeffs r)
return a non-negative measure for the complexity of n; return 0 only when n represents zero; (used fo...
Definition coeffs.h:571
static FORCE_INLINE number n_GetNumerator(number &n, const coeffs r)
return the numerator of n (if elements of r are by nature not fractional, result is n)
Definition coeffs.h:609
LINLINE number nlAdd(number la, number li, const coeffs r)
Definition longrat.cc:2692
LINLINE number nlSub(number la, number li, const coeffs r)
Definition longrat.cc:2758
LINLINE void nlDelete(number *a, const coeffs r)
Definition longrat.cc:2657
BOOLEAN nlGreaterZero(number za, const coeffs r)
Definition longrat.cc:1303
number nlGcd(number a, number b, const coeffs r)
Definition longrat.cc:1340
void nlNormalize(number &x, const coeffs r)
Definition longrat.cc:1481

◆ p_Invers()

static poly p_Invers ( int  n,
poly  u,
intvec w,
const ring  R 
)
static

Definition at line 4519 of file p_polys.cc.

4520{
4521 if(n<0)
4522 return NULL;
4523 number u0=n_Invers(pGetCoeff(u),R->cf);
4524 poly v=p_NSet(u0,R);
4525 if(n==0)
4526 return v;
4527 int *ww=iv2array(w,R);
4528 poly u1=p_JetW(p_Sub(p_One(R),__p_Mult_nn(u,u0,R),R),n,ww,R);
4529 if(u1==NULL)
4530 {
4531 omFreeSize((ADDRESS)ww,(rVar(R)+1)*sizeof(int));
4532 return v;
4533 }
4534 poly v1=__p_Mult_nn(p_Copy(u1,R),u0,R);
4535 v=p_Add_q(v,p_Copy(v1,R),R);
4536 for(int i=n/p_MinDeg(u1,w,R);i>1;i--)
4537 {
4538 v1=p_JetW(p_Mult_q(v1,p_Copy(u1,R),R),n,ww,R);
4539 v=p_Add_q(v,p_Copy(v1,R),R);
4540 }
4541 p_Delete(&u1,R);
4542 p_Delete(&v1,R);
4543 omFreeSize((ADDRESS)ww,(rVar(R)+1)*sizeof(int));
4544 return v;
4545}
const Variable & v
< [in] a sqrfree bivariate poly
Definition facBivar.h:39
int p_MinDeg(poly p, intvec *w, const ring R)
Definition p_polys.cc:4498
poly p_Sub(poly p1, poly p2, const ring r)
Definition p_polys.cc:1994
poly p_NSet(number n, const ring r)
returns the poly representing the number n, destroys n
Definition p_polys.cc:1474
poly p_JetW(poly p, int m, int *w, const ring R)
Definition p_polys.cc:4480
int * iv2array(intvec *iv, const ring R)
Definition weight.cc:200

◆ p_ISet()

poly p_ISet ( long  i,
const ring  r 
)

returns the poly representing the integer i

Definition at line 1298 of file p_polys.cc.

1299{
1300 poly rc = NULL;
1301 if (i!=0)
1302 {
1303 rc = p_Init(r);
1304 pSetCoeff0(rc,n_Init(i,r->cf));
1305 if (n_IsZero(pGetCoeff(rc),r->cf))
1306 p_LmDelete(&rc,r);
1307 }
1308 return rc;
1309}

◆ p_IsHomogeneous()

BOOLEAN p_IsHomogeneous ( poly  p,
const ring  r 
)

Definition at line 3323 of file p_polys.cc.

3324{
3325 poly qp=p;
3326 int o;
3327
3328 if ((p == NULL) || (pNext(p) == NULL)) return TRUE;
3329 pFDegProc d;
3330 if (r->pLexOrder && (r->order[0]==ringorder_lp))
3331 d=p_Totaldegree;
3332 else
3333 d=r->pFDeg;
3334 o = d(p,r);
3335 do
3336 {
3337 if (d(qp,r) != o) return FALSE;
3338 pIter(qp);
3339 }
3340 while (qp != NULL);
3341 return TRUE;
3342}

◆ p_IsHomogeneousW() [1/2]

BOOLEAN p_IsHomogeneousW ( poly  p,
const intvec w,
const intvec module_w,
const ring  r 
)

Definition at line 3364 of file p_polys.cc.

3365{
3366 poly qp=p;
3367 long o;
3368
3369 if ((p == NULL) || (pNext(p) == NULL)) return TRUE;
3370 pIter(qp);
3371 o = totaldegreeWecart_IV(p,r,w->ivGetVec())+(*module_w)[p_GetComp(p,r)];
3372 do
3373 {
3374 long oo=totaldegreeWecart_IV(qp,r,w->ivGetVec())+(*module_w)[p_GetComp(qp,r)];
3375 if (oo != o) return FALSE;
3376 pIter(qp);
3377 }
3378 while (qp != NULL);
3379 return TRUE;
3380}

◆ p_IsHomogeneousW() [2/2]

BOOLEAN p_IsHomogeneousW ( poly  p,
const intvec w,
const ring  r 
)

Definition at line 3347 of file p_polys.cc.

3348{
3349 poly qp=p;
3350 long o;
3351
3352 if ((p == NULL) || (pNext(p) == NULL)) return TRUE;
3353 pIter(qp);
3354 o = totaldegreeWecart_IV(p,r,w->ivGetVec());
3355 do
3356 {
3357 if (totaldegreeWecart_IV(qp,r,w->ivGetVec()) != o) return FALSE;
3358 pIter(qp);
3359 }
3360 while (qp != NULL);
3361 return TRUE;
3362}

◆ p_IsPurePower()

int p_IsPurePower ( const poly  p,
const ring  r 
)

return i, if head depends only on var(i)

Definition at line 1227 of file p_polys.cc.

1228{
1229 int i,k=0;
1230
1231 for (i=r->N;i;i--)
1232 {
1233 if (p_GetExp(p,i, r)!=0)
1234 {
1235 if(k!=0) return 0;
1236 k=i;
1237 }
1238 }
1239 return k;
1240}

◆ p_IsUnivariate()

int p_IsUnivariate ( poly  p,
const ring  r 
)

return i, if poly depends only on var(i)

Definition at line 1248 of file p_polys.cc.

1249{
1250 int i,k=-1;
1251
1252 while (p!=NULL)
1253 {
1254 for (i=r->N;i;i--)
1255 {
1256 if (p_GetExp(p,i, r)!=0)
1257 {
1258 if((k!=-1)&&(k!=i)) return 0;
1259 k=i;
1260 }
1261 }
1262 pIter(p);
1263 }
1264 return k;
1265}

◆ p_Jet()

poly p_Jet ( poly  p,
int  m,
const ring  R 
)

Definition at line 4436 of file p_polys.cc.

4437{
4438 while((p!=NULL) && (p_Totaldegree(p,R)>m)) p_LmDelete(&p,R);
4439 if (p==NULL) return NULL;
4440 poly r=p;
4441 while (pNext(p)!=NULL)
4442 {
4443 if (p_Totaldegree(pNext(p),R)>m)
4444 {
4445 p_LmDelete(&pNext(p),R);
4446 }
4447 else
4448 pIter(p);
4449 }
4450 return r;
4451}

◆ p_JetW()

poly p_JetW ( poly  p,
int  m,
int w,
const ring  R 
)

Definition at line 4480 of file p_polys.cc.

4481{
4482 while((p!=NULL) && (totaldegreeWecart_IV(p,R,w)>m)) p_LmDelete(&p,R);
4483 if (p==NULL) return NULL;
4484 poly r=p;
4485 while (pNext(p)!=NULL)
4486 {
4488 {
4489 p_LmDelete(&pNext(p),R);
4490 }
4491 else
4492 pIter(p);
4493 }
4494 return r;
4495}

◆ p_Last()

poly p_Last ( const poly  p,
int l,
const ring  r 
)

Definition at line 4671 of file p_polys.cc.

4672{
4673 if (p == NULL)
4674 {
4675 l = 0;
4676 return NULL;
4677 }
4678 l = 1;
4679 poly a = p;
4680 if (! rIsSyzIndexRing(r))
4681 {
4682 poly next = pNext(a);
4683 while (next!=NULL)
4684 {
4685 a = next;
4686 next = pNext(a);
4687 l++;
4688 }
4689 }
4690 else
4691 {
4692 long unsigned curr_limit = rGetCurrSyzLimit(r);
4693 poly pp = a;
4694 while ((a=pNext(a))!=NULL)
4695 {
4696 if (__p_GetComp(a,r)<=curr_limit/*syzComp*/)
4697 l++;
4698 else break;
4699 pp = a;
4700 }
4701 a=pp;
4702 }
4703 return a;
4704}
CanonicalForm FACTORY_PUBLIC pp(const CanonicalForm &)
CanonicalForm pp ( const CanonicalForm & f )
Definition cf_gcd.cc:676
int l
Definition cfEzgcd.cc:100
ListNode * next
Definition janet.h:31
static int rGetCurrSyzLimit(const ring r)
Definition ring.h:728
static BOOLEAN rIsSyzIndexRing(const ring r)
Definition ring.h:725

◆ p_Lcm() [1/2]

poly p_Lcm ( const poly  a,
const poly  b,
const ring  r 
)

Definition at line 1668 of file p_polys.cc.

1669{
1670 poly m=p_Init(r);
1671 p_Lcm(a, b, m, r);
1672 p_Setm(m,r);
1673 return(m);
1674}
void p_Lcm(const poly a, const poly b, poly m, const ring r)
Definition p_polys.cc:1659

◆ p_Lcm() [2/2]

void p_Lcm ( const poly  a,
const poly  b,
poly  m,
const ring  r 
)

Definition at line 1659 of file p_polys.cc.

1660{
1661 for (int i=r->N; i; --i)
1662 p_SetExp(m,i, si_max( p_GetExp(a,i,r), p_GetExp(b,i,r)),r);
1663
1664 p_SetComp(m, si_max(p_GetComp(a,r), p_GetComp(b,r)),r);
1665 /* Don't do a pSetm here, otherwise hres/lres chockes */
1666}
static int si_max(const int a, const int b)
Definition auxiliary.h:124
static unsigned long p_SetComp(poly p, unsigned long c, ring r)
Definition p_polys.h:247

◆ p_LcmRat()

poly p_LcmRat ( const poly  a,
const poly  b,
const long  lCompM,
const ring  r 
)

Definition at line 1681 of file p_polys.cc.

1682{
1683 poly m = // p_One( r);
1684 p_Init(r);
1685
1686// const int (currRing->N) = r->N;
1687
1688 // for (int i = (currRing->N); i>=r->real_var_start; i--)
1689 for (int i = r->real_var_end; i>=r->real_var_start; i--)
1690 {
1691 const int lExpA = p_GetExp (a, i, r);
1692 const int lExpB = p_GetExp (b, i, r);
1693
1694 p_SetExp (m, i, si_max(lExpA, lExpB), r);
1695 }
1696
1697 p_SetComp (m, lCompM, r);
1698 p_Setm(m,r);
1699 p_GetCoeff(m, r)=NULL;
1700
1701 return(m);
1702};

◆ p_LmDeleteAndNextRat()

void p_LmDeleteAndNextRat ( poly *  p,
int  ishift,
ring  r 
)

Definition at line 1704 of file p_polys.cc.

1705{
1706 /* modifies p*/
1707 // Print("start: "); Print(" "); p_wrp(*p,r);
1708 p_LmCheckPolyRing2(*p, r);
1709 poly q = p_Head(*p,r);
1710 const long cmp = p_GetComp(*p, r);
1711 while ( ( (*p)!=NULL ) && ( p_Comp_k_n(*p, q, ishift+1, r) ) && (p_GetComp(*p, r) == cmp) )
1712 {
1713 p_LmDelete(p,r);
1714 // Print("while: ");p_wrp(*p,r);Print(" ");
1715 }
1716 // p_wrp(*p,r);Print(" ");
1717 // PrintS("end\n");
1718 p_LmDelete(&q,r);
1719}
#define p_LmCheckPolyRing2(p, r)
Definition monomials.h:199

◆ p_LowVar()

int p_LowVar ( poly  p,
const ring  r 
)

the minimal index of used variables - 1

Definition at line 4730 of file p_polys.cc.

4731{
4732 int k,l,lex;
4733
4734 if (p == NULL) return -1;
4735
4736 k = 32000;/*a very large dummy value*/
4737 while (p != NULL)
4738 {
4739 l = 1;
4740 lex = p_GetExp(p,l,r);
4741 while ((l < (rVar(r))) && (lex == 0))
4742 {
4743 l++;
4744 lex = p_GetExp(p,l,r);
4745 }
4746 l--;
4747 if (l < k) k = l;
4748 pIter(p);
4749 }
4750 return k;
4751}

◆ p_MaxExpPerVar()

int p_MaxExpPerVar ( poly  p,
int  i,
const ring  r 
)

max exponent of variable x_i in p

Definition at line 5042 of file p_polys.cc.

5043{
5044 int m=0;
5045 while(p!=NULL)
5046 {
5047 int mm=p_GetExp(p,i,r);
5048 if (mm>m) m=mm;
5049 pIter(p);
5050 }
5051 return m;
5052}

◆ p_MDivide()

poly p_MDivide ( poly  a,
poly  b,
const ring  r 
)

Definition at line 1493 of file p_polys.cc.

1494{
1495 assume((p_GetComp(a,r)==p_GetComp(b,r)) || (p_GetComp(b,r)==0));
1496 int i;
1497 poly result = p_Init(r);
1498
1499 for(i=(int)r->N; i; i--)
1500 p_SetExp(result,i, p_GetExp(a,i,r)- p_GetExp(b,i,r),r);
1501 p_SetComp(result, p_GetComp(a,r) - p_GetComp(b,r),r);
1502 p_Setm(result,r);
1503 return result;
1504}

◆ p_MinDeg()

int p_MinDeg ( poly  p,
intvec w,
const ring  R 
)

Definition at line 4498 of file p_polys.cc.

4499{
4500 if(p==NULL)
4501 return -1;
4502 int d=-1;
4503 while(p!=NULL)
4504 {
4505 int d0=0;
4506 for(int j=0;j<rVar(R);j++)
4507 if(w==NULL||j>=w->length())
4508 d0+=p_GetExp(p,j+1,R);
4509 else
4510 d0+=(*w)[j]*p_GetExp(p,j+1,R);
4511 if(d0<d||d==-1)
4512 d=d0;
4513 pIter(p);
4514 }
4515 return d;
4516}

◆ p_mInit()

poly p_mInit ( const char st,
BOOLEAN ok,
const ring  r 
)

Definition at line 1443 of file p_polys.cc.

1444{
1445 poly p;
1446 char *sst=(char*)st;
1447 BOOLEAN neg=FALSE;
1448 if (sst[0]=='-') { neg=TRUE; sst=sst+1; }
1449 const char *s=p_Read(sst,p,r);
1450 if (*s!='\0')
1451 {
1452 if ((s!=sst)&&isdigit(sst[0]))
1453 {
1455 }
1456 ok=FALSE;
1457 if (p!=NULL)
1458 {
1459 if (pGetCoeff(p)==NULL) p_LmFree(p,r);
1460 else p_LmDelete(p,r);
1461 }
1462 return NULL;
1463 }
1464 p_Test(p,r);
1465 ok=!errorreported;
1466 if (neg) p=p_Neg(p,r);
1467 return p;
1468}
VAR short errorreported
Definition feFopen.cc:23
const char * p_Read(const char *st, poly &rc, const ring r)
Definition p_polys.cc:1371
static void p_LmFree(poly p, ring)
Definition p_polys.h:683

◆ p_MonMult()

static void p_MonMult ( poly  p,
poly  q,
const ring  r 
)
static

Definition at line 2028 of file p_polys.cc.

2029{
2030 number x, y;
2031
2032 y = pGetCoeff(p);
2033 x = n_Mult(y,pGetCoeff(q),r->cf);
2034 n_Delete(&y,r->cf);
2035 pSetCoeff0(p,x);
2036 //for (int i=pVariables; i!=0; i--)
2037 //{
2038 // pAddExp(p,i, pGetExp(q,i));
2039 //}
2040 //p->Order += q->Order;
2041 p_ExpVectorAdd(p,q,r);
2042}
const CanonicalForm int const CFList const Variable & y
Definition facAbsFact.cc:53
static void p_ExpVectorAdd(poly p1, poly p2, const ring r)
Definition p_polys.h:1425

◆ p_MonMultC()

static poly p_MonMultC ( poly  p,
poly  q,
const ring  rr 
)
static

Definition at line 2048 of file p_polys.cc.

2049{
2050 number x;
2051 poly r = p_Init(rr);
2052
2053 x = n_Mult(pGetCoeff(p),pGetCoeff(q),rr->cf);
2054 pSetCoeff0(r,x);
2055 p_ExpVectorSum(r,p, q, rr);
2056 return r;
2057}
static void p_ExpVectorSum(poly pr, poly p1, poly p2, const ring r)
Definition p_polys.h:1439

◆ p_MonPower()

static poly p_MonPower ( poly  p,
int  exp,
const ring  r 
)
static

Definition at line 2004 of file p_polys.cc.

2005{
2006 int i;
2007
2008 if(!n_IsOne(pGetCoeff(p),r->cf))
2009 {
2010 number x, y;
2011 y = pGetCoeff(p);
2012 n_Power(y,exp,&x,r->cf);
2013 n_Delete(&y,r->cf);
2014 pSetCoeff0(p,x);
2015 }
2016 for (i=rVar(r); i!=0; i--)
2017 {
2018 p_MultExp(p,i, exp,r);
2019 }
2020 p_Setm(p,r);
2021 return p;
2022}
static FORCE_INLINE void n_Power(number a, int b, number *res, const coeffs r)
fill res with the power a^b
Definition coeffs.h:633
gmp_float exp(const gmp_float &a)
static long p_MultExp(poly p, int v, long ee, ring r)
Definition p_polys.h:621

◆ p_Norm()

void p_Norm ( poly  p1,
const ring  r 
)

Definition at line 3740 of file p_polys.cc.

3741{
3742 if (UNLIKELY(p1==NULL)) return;
3743 if (rField_is_Ring(r))
3744 {
3745 if(!n_GreaterZero(pGetCoeff(p1),r->cf)) p1 = p_Neg(p1,r);
3746 if (!n_IsUnit(pGetCoeff(p1), r->cf)) return;
3747 // Werror("p_Norm not possible in the case of coefficient rings.");
3748 }
3749 else //(p1!=NULL)
3750 {
3751 if (!n_IsOne(pGetCoeff(p1),r->cf))
3752 {
3753 if (UNLIKELY(pNext(p1)==NULL))
3754 {
3755 p_SetCoeff(p1,n_Init(1,r->cf),r);
3756 return;
3757 }
3758 number k = pGetCoeff(p1);
3759 pSetCoeff0(p1,n_Init(1,r->cf));
3760 poly h = pNext(p1);
3761 if (LIKELY(rField_is_Zp(r)))
3762 {
3763 if (r->cf->ch>32003)
3764 {
3765 number inv=n_Invers(k,r->cf);
3766 while (h!=NULL)
3767 {
3768 number c=n_Mult(pGetCoeff(h),inv,r->cf);
3769 // no need to normalize
3770 p_SetCoeff(h,c,r);
3771 pIter(h);
3772 }
3773 // no need for n_Delete for Zp: n_Delete(&inv,r->cf);
3774 }
3775 else
3776 {
3777 while (h!=NULL)
3778 {
3779 number c=n_Div(pGetCoeff(h),k,r->cf);
3780 // no need to normalize
3781 p_SetCoeff(h,c,r);
3782 pIter(h);
3783 }
3784 }
3785 }
3786 else if(getCoeffType(r->cf)==n_algExt)
3787 {
3788 n_Normalize(k,r->cf);
3789 number inv=n_Invers(k,r->cf);
3790 while (h!=NULL)
3791 {
3792 number c=n_Mult(pGetCoeff(h),inv,r->cf);
3793 // no need to normalize
3794 // normalize already in nMult: Zp_a, Q_a
3795 p_SetCoeff(h,c,r);
3796 pIter(h);
3797 }
3798 n_Delete(&inv,r->cf);
3799 n_Delete(&k,r->cf);
3800 }
3801 else
3802 {
3803 n_Normalize(k,r->cf);
3804 while (h!=NULL)
3805 {
3806 number c=n_Div(pGetCoeff(h),k,r->cf);
3807 // no need to normalize: Z/p, R
3808 // remains: Q
3809 if (rField_is_Q(r)) n_Normalize(c,r->cf);
3810 p_SetCoeff(h,c,r);
3811 pIter(h);
3812 }
3813 n_Delete(&k,r->cf);
3814 }
3815 }
3816 else
3817 {
3818 //if (r->cf->cfNormalize != nDummy2) //TODO: OPTIMIZE
3819 if (rField_is_Q(r))
3820 {
3821 poly h = pNext(p1);
3822 while (h!=NULL)
3823 {
3824 n_Normalize(pGetCoeff(h),r->cf);
3825 pIter(h);
3826 }
3827 }
3828 }
3829 }
3830}
#define UNLIKELY(X)
Definition auxiliary.h:404
#define LIKELY(X)
Definition auxiliary.h:403
static FORCE_INLINE BOOLEAN n_IsUnit(number n, const coeffs r)
TRUE iff n has a multiplicative inverse in the given coeff field/ring r.
Definition coeffs.h:519

◆ p_Normalize()

void p_Normalize ( poly  p,
const ring  r 
)

Definition at line 3835 of file p_polys.cc.

3836{
3837 const coeffs cf=r->cf;
3838 /* Z/p, GF(p,n), R, long R/C, Nemo rings */
3839 if (cf->cfNormalize==ndNormalize)
3840 return;
3841 while (p!=NULL)
3842 {
3843 // no test before n_Normalize: n_Normalize should fix problems
3845 pIter(p);
3846 }
3847}
void ndNormalize(number &, const coeffs)
Definition numbers.cc:185

◆ p_NSet()

poly p_NSet ( number  n,
const ring  r 
)

returns the poly representing the number n, destroys n

Definition at line 1474 of file p_polys.cc.

1475{
1476 if (n_IsZero(n,r->cf))
1477 {
1478 n_Delete(&n, r->cf);
1479 return NULL;
1480 }
1481 else
1482 {
1483 poly rc = p_Init(r);
1484 pSetCoeff0(rc,n);
1485 return rc;
1486 }
1487}

◆ p_One()

poly p_One ( const ring  r)

Definition at line 1314 of file p_polys.cc.

1315{
1316 poly rc = p_Init(r);
1317 pSetCoeff0(rc,n_Init(1,r->cf));
1318 return rc;
1319}

◆ p_OneComp()

BOOLEAN p_OneComp ( poly  p,
const ring  r 
)

return TRUE if all monoms have the same component

Definition at line 1209 of file p_polys.cc.

1210{
1211 if(p!=NULL)
1212 {
1213 long i = p_GetComp(p, r);
1214 while (pNext(p)!=NULL)
1215 {
1216 pIter(p);
1217 if(i != p_GetComp(p, r)) return FALSE;
1218 }
1219 }
1220 return TRUE;
1221}

◆ p_PermPoly()

poly p_PermPoly ( poly  p,
const int perm,
const ring  oldRing,
const ring  dst,
nMapFunc  nMap,
const int par_perm,
int  OldPar,
BOOLEAN  use_mult 
)

Definition at line 4152 of file p_polys.cc.

4154{
4155#if 0
4156 p_Test(p, oldRing);
4157 PrintS("p_PermPoly::p: "); p_Write(p, oldRing, oldRing);
4158#endif
4159 const int OldpVariables = rVar(oldRing);
4160 poly result = NULL;
4161 poly result_last = NULL;
4162 poly aq = NULL; /* the map coefficient */
4163 poly qq; /* the mapped monomial */
4164 assume(dst != NULL);
4165 assume(dst->cf != NULL);
4166 #ifdef HAVE_PLURAL
4167 poly tmp_mm=p_One(dst);
4168 #endif
4169 while (p != NULL)
4170 {
4171 // map the coefficient
4172 if ( ((OldPar == 0) || (par_perm == NULL) || rField_is_GF(oldRing) || (nMap==ndCopyMap))
4173 && (nMap != NULL) )
4174 {
4175 qq = p_Init(dst);
4176 assume( nMap != NULL );
4177 number n = nMap(p_GetCoeff(p, oldRing), oldRing->cf, dst->cf);
4178 n_Test (n,dst->cf);
4179 if ( nCoeff_is_algExt(dst->cf) )
4180 n_Normalize(n, dst->cf);
4181 p_GetCoeff(qq, dst) = n;// Note: n can be a ZERO!!!
4182 }
4183 else
4184 {
4185 qq = p_One(dst);
4186// aq = naPermNumber(p_GetCoeff(p, oldRing), par_perm, OldPar, oldRing); // no dst???
4187// poly n_PermNumber(const number z, const int *par_perm, const int P, const ring src, const ring dst)
4189 p_Test(aq, dst);
4190 if ( nCoeff_is_algExt(dst->cf) )
4192 if (aq == NULL)
4193 p_SetCoeff(qq, n_Init(0, dst->cf),dst); // Very dirty trick!!!
4194 p_Test(aq, dst);
4195 }
4196 if (rRing_has_Comp(dst))
4198 if ( n_IsZero(pGetCoeff(qq), dst->cf) )
4199 {
4200 p_LmDelete(&qq,dst);
4201 qq = NULL;
4202 }
4203 else
4204 {
4205 // map pars:
4206 int mapped_to_par = 0;
4207 for(int i = 1; i <= OldpVariables; i++)
4208 {
4209 int e = p_GetExp(p, i, oldRing);
4210 if (e != 0)
4211 {
4212 if (perm==NULL)
4213 p_SetExp(qq, i, e, dst);
4214 else if (perm[i]>0)
4215 {
4216 #ifdef HAVE_PLURAL
4217 if(use_mult)
4218 {
4219 p_SetExp(tmp_mm,perm[i],e,dst);
4220 p_Setm(tmp_mm,dst);
4222 p_SetExp(tmp_mm,perm[i],0,dst);
4223
4224 }
4225 else
4226 #endif
4227 p_AddExp(qq,perm[i], e/*p_GetExp( p,i,oldRing)*/, dst);
4228 }
4229 else if (perm[i]<0)
4230 {
4231 number c = p_GetCoeff(qq, dst);
4232 if (rField_is_GF(dst))
4233 {
4234 assume( dst->cf->extRing == NULL );
4235 number ee = n_Param(1, dst);
4236 number eee;
4237 n_Power(ee, e, &eee, dst->cf); //nfDelete(ee,dst);
4238 ee = n_Mult(c, eee, dst->cf);
4239 //nfDelete(c,dst);nfDelete(eee,dst);
4240 pSetCoeff0(qq,ee);
4241 }
4242 else if (nCoeff_is_Extension(dst->cf))
4243 {
4244 const int par = -perm[i];
4245 assume( par > 0 );
4246// WarnS("longalg missing 3");
4247#if 1
4248 const coeffs C = dst->cf;
4249 assume( C != NULL );
4250 const ring R = C->extRing;
4251 assume( R != NULL );
4252 assume( par <= rVar(R) );
4253 poly pcn; // = (number)c
4254 assume( !n_IsZero(c, C) );
4255 if( nCoeff_is_algExt(C) )
4256 pcn = (poly) c;
4257 else // nCoeff_is_transExt(C)
4258 pcn = NUM((fraction)c);
4259 if (pNext(pcn) == NULL) // c->z
4260 p_AddExp(pcn, -perm[i], e, R);
4261 else /* more difficult: we have really to multiply: */
4262 {
4263 poly mmc = p_ISet(1, R);
4264 p_SetExp(mmc, -perm[i], e, R);
4265 p_Setm(mmc, R);
4266 number nnc;
4267 // convert back to a number: number nnc = mmc;
4268 if( nCoeff_is_algExt(C) )
4269 nnc = (number) mmc;
4270 else // nCoeff_is_transExt(C)
4271 nnc = ntInit(mmc, C);
4272 p_GetCoeff(qq, dst) = n_Mult((number)c, nnc, C);
4273 n_Delete((number *)&c, C);
4274 n_Delete((number *)&nnc, C);
4275 }
4276 mapped_to_par=1;
4277#endif
4278 }
4279 }
4280 else
4281 {
4282 /* this variable maps to 0 !*/
4283 p_LmDelete(&qq, dst);
4284 break;
4285 }
4286 }
4287 }
4288 if ( mapped_to_par && (qq!= NULL) && nCoeff_is_algExt(dst->cf) )
4289 {
4290 number n = p_GetCoeff(qq, dst);
4291 n_Normalize(n, dst->cf);
4292 p_GetCoeff(qq, dst) = n;
4293 }
4294 }
4295 pIter(p);
4296
4297#if 0
4298 p_Test(aq,dst);
4299 PrintS("aq: "); p_Write(aq, dst, dst);
4300#endif
4301
4302
4303#if 1
4304 if (qq!=NULL)
4305 {
4306 p_Setm(qq,dst);
4307
4308 p_Test(aq,dst);
4309 p_Test(qq,dst);
4310
4311#if 0
4312 PrintS("qq: "); p_Write(qq, dst, dst);
4313#endif
4314
4315 if (aq!=NULL)
4316 qq=p_Mult_q(aq,qq,dst);
4317 aq = qq;
4318 while (pNext(aq) != NULL) pIter(aq);
4319 if (result_last==NULL)
4320 {
4321 result=qq;
4322 }
4323 else
4324 {
4326 }
4328 aq = NULL;
4329 }
4330 else if (aq!=NULL)
4331 {
4332 p_Delete(&aq,dst);
4333 }
4334 }
4336#else
4337 // if (qq!=NULL)
4338 // {
4339 // pSetm(qq);
4340 // pTest(qq);
4341 // pTest(aq);
4342 // if (aq!=NULL) qq=pMult(aq,qq);
4343 // aq = qq;
4344 // while (pNext(aq) != NULL) pIter(aq);
4345 // pNext(aq) = result;
4346 // aq = NULL;
4347 // result = qq;
4348 // }
4349 // else if (aq!=NULL)
4350 // {
4351 // pDelete(&aq);
4352 // }
4353 //}
4354 //p = result;
4355 //result = NULL;
4356 //while (p != NULL)
4357 //{
4358 // qq = p;
4359 // pIter(p);
4360 // qq->next = NULL;
4361 // result = pAdd(result, qq);
4362 //}
4363#endif
4364 p_Test(result,dst);
4365#if 0
4366 p_Test(result,dst);
4367 PrintS("result: "); p_Write(result,dst,dst);
4368#endif
4369 #ifdef HAVE_PLURAL
4371 #endif
4372 return result;
4373}
static FORCE_INLINE number n_Param(const int iParameter, const coeffs r)
return the (iParameter^th) parameter as a NEW number NOTE: parameter numbering: 1....
Definition coeffs.h:776
static FORCE_INLINE BOOLEAN nCoeff_is_Extension(const coeffs r)
Definition coeffs.h:839
number ndCopyMap(number a, const coeffs src, const coeffs dst)
Definition numbers.cc:287
#define rRing_has_Comp(r)
Definition monomials.h:266
poly n_PermNumber(const number z, const int *par_perm, const int, const ring src, const ring dst)
Definition p_polys.cc:4049
poly p_ISet(long i, const ring r)
returns the poly representing the integer i
Definition p_polys.cc:1298
void p_Write(poly p, ring lmRing, ring tailRing)
Definition polys0.cc:342
static poly p_Mult_mm(poly p, poly m, const ring r)
Definition p_polys.h:1051
static poly p_SortAdd(poly p, const ring r, BOOLEAN revert=FALSE)
Definition p_polys.h:1233
static BOOLEAN rField_is_GF(const ring r)
Definition ring.h:526
number ntInit(long i, const coeffs cf)
Definition transext.cc:704

◆ p_PolyDiv()

poly p_PolyDiv ( poly &  p,
const poly  divisor,
const BOOLEAN  needResult,
const ring  r 
)

assumes that p and divisor are univariate polynomials in r, mentioning the same variable; assumes divisor != NULL; p may be NULL; assumes a global monomial ordering in r; performs polynomial division of p by divisor:

  • afterwards p contains the remainder of the division, i.e., p_before = result * divisor + p_afterwards;
  • if needResult == TRUE, then the method computes and returns 'result', otherwise NULL is returned (This parametrization can be used when one is only interested in the remainder of the division. In this case, the method will be slightly faster.) leaves divisor unmodified

Definition at line 1874 of file p_polys.cc.

1875{
1876 assume(divisor != NULL);
1877 if (p == NULL) return NULL;
1878
1879 poly result = NULL;
1880 number divisorLC = p_GetCoeff(divisor, r);
1881 int divisorLE = p_GetExp(divisor, 1, r);
1882 while ((p != NULL) && (p_Deg(p, r) >= p_Deg(divisor, r)))
1883 {
1884 /* determine t = LT(p) / LT(divisor) */
1885 poly t = p_ISet(1, r);
1886 number c = n_Div(p_GetCoeff(p, r), divisorLC, r->cf);
1887 n_Normalize(c,r->cf);
1888 p_SetCoeff(t, c, r);
1889 int e = p_GetExp(p, 1, r) - divisorLE;
1890 p_SetExp(t, 1, e, r);
1891 p_Setm(t, r);
1892 if (needResult) result = p_Add_q(result, p_Copy(t, r), r);
1893 p = p_Add_q(p, p_Neg(p_Mult_q(t, p_Copy(divisor, r), r), r), r);
1894 }
1895 return result;
1896}
long p_Deg(poly a, const ring r)
Definition p_polys.cc:586

◆ p_Pow()

static poly p_Pow ( poly  p,
int  i,
const ring  r 
)
static

Definition at line 2175 of file p_polys.cc.

2176{
2177 poly rc = p_Copy(p,r);
2178 i -= 2;
2179 do
2180 {
2181 rc = p_Mult_q(rc,p_Copy(p,r),r);
2182 p_Normalize(rc,r);
2183 i--;
2184 }
2185 while (i != 0);
2186 return p_Mult_q(rc,p,r);
2187}

◆ p_Pow_charp()

static poly p_Pow_charp ( poly  p,
int  i,
const ring  r 
)
static

Definition at line 2189 of file p_polys.cc.

2190{
2191 //assume char_p == i
2192 poly h=p;
2193 while(h!=NULL) { p_MonPower(h,i,r);pIter(h);}
2194 return p;
2195}
static poly p_MonPower(poly p, int exp, const ring r)
Definition p_polys.cc:2004

◆ p_Power()

poly p_Power ( poly  p,
int  i,
const ring  r 
)

Definition at line 2201 of file p_polys.cc.

2202{
2203 poly rc=NULL;
2204
2205 if (i==0)
2206 {
2207 p_Delete(&p,r);
2208 return p_One(r);
2209 }
2210
2211 if(p!=NULL)
2212 {
2213 if ( (i > 0) && ((unsigned long ) i > (r->bitmask))
2215 && (!rIsLPRing(r))
2216 #endif
2217 )
2218 {
2219 Werror("exponent %d is too large, max. is %ld",i,r->bitmask);
2220 return NULL;
2221 }
2222 switch (i)
2223 {
2224// cannot happen, see above
2225// case 0:
2226// {
2227// rc=pOne();
2228// pDelete(&p);
2229// break;
2230// }
2231 case 1:
2232 rc=p;
2233 break;
2234 case 2:
2235 rc=p_Mult_q(p_Copy(p,r),p,r);
2236 break;
2237 default:
2238 if (i < 0)
2239 {
2240 p_Delete(&p,r);
2241 return NULL;
2242 }
2243 else
2244 {
2245#ifdef HAVE_PLURAL
2246 if (rIsNCRing(r)) /* in the NC case nothing helps :-( */
2247 {
2248 int j=i;
2249 rc = p_Copy(p,r);
2250 while (j>1)
2251 {
2252 rc = p_Mult_q(p_Copy(p,r),rc,r);
2253 j--;
2254 }
2255 p_Delete(&p,r);
2256 return rc;
2257 }
2258#endif
2259 rc = pNext(p);
2260 if (rc == NULL)
2261 return p_MonPower(p,i,r);
2262 /* else: binom ?*/
2263 int char_p=rInternalChar(r);
2264 if ((char_p>0) && (i>char_p)
2265 && ((rField_is_Zp(r,char_p)
2266 || (rField_is_Zp_a(r,char_p)))))
2267 {
2268 poly h=p_Pow_charp(p_Copy(p,r),char_p,r);
2269 int rest=i-char_p;
2270 while (rest>=char_p)
2271 {
2272 rest-=char_p;
2274 }
2275 poly res=h;
2276 if (rest>0)
2277 res=p_Mult_q(p_Power(p_Copy(p,r),rest,r),h,r);
2278 p_Delete(&p,r);
2279 return res;
2280 }
2281 if ((pNext(rc) != NULL)
2282 || rField_is_Ring(r)
2283 )
2284 return p_Pow(p,i,r);
2285 if ((char_p==0) || (i<=char_p))
2286 return p_TwoMonPower(p,i,r);
2287 return p_Pow(p,i,r);
2288 }
2289 /*end default:*/
2290 }
2291 }
2292 return rc;
2293}
poly p_Power(poly p, int i, const ring r)
Definition p_polys.cc:2201
static poly p_TwoMonPower(poly p, int exp, const ring r)
Definition p_polys.cc:2110
static poly p_Pow_charp(poly p, int i, const ring r)
Definition p_polys.cc:2189
static poly p_Pow(poly p, int i, const ring r)
Definition p_polys.cc:2175
void Werror(const char *fmt,...)
Definition reporter.cc:189
static int rInternalChar(const ring r)
Definition ring.h:694
static BOOLEAN rIsLPRing(const ring r)
Definition ring.h:416

◆ p_ProjectiveUnique()

void p_ProjectiveUnique ( poly  ph,
const ring  r 
)

Definition at line 3147 of file p_polys.cc.

3148{
3149 if( ph == NULL )
3150 return;
3151
3152 const coeffs C = r->cf;
3153
3154 number h;
3155 poly p;
3156
3157 if (nCoeff_is_Ring(C))
3158 {
3159 p_ContentForGB(ph,r);
3160 if(!n_GreaterZero(pGetCoeff(ph),C)) ph = p_Neg(ph,r);
3162 return;
3163 }
3164
3166 {
3167 if(!n_GreaterZero(pGetCoeff(ph),C)) ph = p_Neg(ph,r);
3168 return;
3169 }
3170 p = ph;
3171
3172 assume(p != NULL);
3173
3174 if(pNext(p)==NULL) // a monomial
3175 {
3176 p_SetCoeff(p, n_Init(1, C), r);
3177 return;
3178 }
3179
3180 assume(pNext(p)!=NULL);
3181
3182 if(!nCoeff_is_Q(C) && !nCoeff_is_transExt(C))
3183 {
3184 h = p_GetCoeff(p, C);
3185 number hInv = n_Invers(h, C);
3186 pIter(p);
3187 while (p!=NULL)
3188 {
3189 p_SetCoeff(p, n_Mult(p_GetCoeff(p, C), hInv, C), r);
3190 pIter(p);
3191 }
3192 n_Delete(&hInv, C);
3193 p = ph;
3194 p_SetCoeff(p, n_Init(1, C), r);
3195 }
3196
3197 p_Cleardenom(ph, r); //removes also Content
3198
3199
3200 /* normalize ph over a transcendental extension s.t.
3201 lead (ph) is > 0 if extRing->cf == Q
3202 or lead (ph) is monic if extRing->cf == Zp*/
3203 if (nCoeff_is_transExt(C))
3204 {
3205 p= ph;
3206 h= p_GetCoeff (p, C);
3207 fraction f = (fraction) h;
3208 number n=p_GetCoeff (NUM (f),C->extRing->cf);
3209 if (rField_is_Q (C->extRing))
3210 {
3211 if (!n_GreaterZero(n,C->extRing->cf))
3212 {
3213 p=p_Neg (p,r);
3214 }
3215 }
3216 else if (rField_is_Zp(C->extRing))
3217 {
3218 if (!n_IsOne (n, C->extRing->cf))
3219 {
3220 n=n_Invers (n,C->extRing->cf);
3221 nMapFunc nMap;
3222 nMap= n_SetMap (C->extRing->cf, C);
3223 number ninv= nMap (n,C->extRing->cf, C);
3224 p=__p_Mult_nn (p, ninv, r);
3225 n_Delete (&ninv, C);
3226 n_Delete (&n, C->extRing->cf);
3227 }
3228 }
3229 p= ph;
3230 }
3231
3232 return;
3233}
static FORCE_INLINE BOOLEAN nCoeff_is_Ring(const coeffs r)
Definition coeffs.h:730
static FORCE_INLINE BOOLEAN nCoeff_is_Zp(const coeffs r)
Definition coeffs.h:793
poly p_Cleardenom(poly p, const ring r)
Definition p_polys.cc:2849

◆ p_Read()

const char * p_Read ( const char st,
poly &  rc,
const ring  r 
)

Definition at line 1371 of file p_polys.cc.

1372{
1373 if (r==NULL) { rc=NULL;return st;}
1374 int i,j;
1375 rc = p_Init(r);
1376 const char *s = n_Read(st,&(p_GetCoeff(rc, r)),r->cf);
1377 if (s==st)
1378 /* i.e. it does not start with a coeff: test if it is a ringvar*/
1379 {
1380 j = r_IsRingVar(s,r->names,r->N);
1381 if (j >= 0)
1382 {
1383 p_IncrExp(rc,1+j,r);
1384 while (*s!='\0') s++;
1385 goto done;
1386 }
1387 }
1388 while (*s!='\0')
1389 {
1390 char ss[2];
1391 ss[0] = *s++;
1392 ss[1] = '\0';
1393 j = r_IsRingVar(ss,r->names,r->N);
1394 if (j >= 0)
1395 {
1396 const char *s_save=s;
1397 s = eati(s,&i);
1398 if (((unsigned long)i) > r->bitmask/2)
1399 {
1400 // exponent to large: it is not a monomial
1401 p_LmDelete(&rc,r);
1402 return s_save;
1403 }
1404 p_AddExp(rc,1+j, (long)i, r);
1405 }
1406 else
1407 {
1408 // 1st char of is not a varname
1409 // We return the parsed polynomial nevertheless. This is needed when
1410 // we are parsing coefficients in a rational function field.
1411 s--;
1412 break;
1413 }
1414 }
1415done:
1416 if (n_IsZero(pGetCoeff(rc),r->cf)) p_LmDelete(&rc,r);
1417 else
1418 {
1419#ifdef HAVE_PLURAL
1420 // in super-commutative ring
1421 // squares of anti-commutative variables are zeroes!
1422 if(rIsSCA(r))
1423 {
1424 const unsigned int iFirstAltVar = scaFirstAltVar(r);
1425 const unsigned int iLastAltVar = scaLastAltVar(r);
1426
1427 assume(rc != NULL);
1428
1429 for(unsigned int k = iFirstAltVar; k <= iLastAltVar; k++)
1430 if( p_GetExp(rc, k, r) > 1 )
1431 {
1432 p_LmDelete(&rc, r);
1433 goto finish;
1434 }
1435 }
1436#endif
1437
1438 p_Setm(rc,r);
1439 }
1440finish:
1441 return s;
1442}
static FORCE_INLINE const char * n_Read(const char *s, number *a, const coeffs r)
!!! Recommendation: This method is too cryptic to be part of the user- !!! interface....
Definition coeffs.h:599
const char * eati(const char *s, int *i)
Definition reporter.cc:373
static bool rIsSCA(const ring r)
Definition nc.h:190
static long p_IncrExp(poly p, int v, ring r)
Definition p_polys.h:591
int r_IsRingVar(const char *n, char **names, int N)
Definition ring.cc:213
static short scaLastAltVar(ring r)
Definition sca.h:25
static short scaFirstAltVar(ring r)
Definition sca.h:18

◆ p_Series()

poly p_Series ( int  n,
poly  p,
poly  u,
intvec w,
const ring  R 
)

Definition at line 4548 of file p_polys.cc.

4549{
4550 int *ww=iv2array(w,R);
4551 if(p!=NULL)
4552 {
4553 if(u==NULL)
4554 p=p_JetW(p,n,ww,R);
4555 else
4556 p=p_JetW(p_Mult_q(p,p_Invers(n-p_MinDeg(p,w,R),u,w,R),R),n,ww,R);
4557 }
4558 omFreeSize((ADDRESS)ww,(rVar(R)+1)*sizeof(int));
4559 return p;
4560}
static poly p_Invers(int n, poly u, intvec *w, const ring R)
Definition p_polys.cc:4519

◆ p_Setm_Dummy()

void p_Setm_Dummy ( poly  p,
const ring  r 
)

Definition at line 540 of file p_polys.cc.

541{
543}

◆ p_Setm_General()

void p_Setm_General ( poly  p,
const ring  r 
)

!!!????? where?????

Definition at line 158 of file p_polys.cc.

159{
161 int pos=0;
162 if (r->typ!=NULL)
163 {
164 loop
165 {
166 unsigned long ord=0;
167 sro_ord* o=&(r->typ[pos]);
168 switch(o->ord_typ)
169 {
170 case ro_dp:
171 {
172 int a,e;
173 a=o->data.dp.start;
174 e=o->data.dp.end;
175 for(int i=a;i<=e;i++) ord+=p_GetExp(p,i,r);
176 p->exp[o->data.dp.place]=ord;
177 break;
178 }
179 case ro_wp_neg:
180 ord=POLY_NEGWEIGHT_OFFSET; // no break;
181 case ro_wp:
182 {
183 int a,e;
184 a=o->data.wp.start;
185 e=o->data.wp.end;
186 int *w=o->data.wp.weights;
187#if 1
188 for(int i=a;i<=e;i++) ord+=((unsigned long)p_GetExp(p,i,r))*((unsigned long)w[i-a]);
189#else
190 long ai;
191 int ei,wi;
192 for(int i=a;i<=e;i++)
193 {
194 ei=p_GetExp(p,i,r);
195 wi=w[i-a];
196 ai=ei*wi;
197 if (ai/ei!=wi) pSetm_error=TRUE;
198 ord+=ai;
199 if (ord<ai) pSetm_error=TRUE;
200 }
201#endif
202 p->exp[o->data.wp.place]=ord;
203 break;
204 }
205 case ro_am:
206 {
208 const short a=o->data.am.start;
209 const short e=o->data.am.end;
210 const int * w=o->data.am.weights;
211#if 1
212 for(short i=a; i<=e; i++, w++)
213 ord += ((*w) * p_GetExp(p,i,r));
214#else
215 long ai;
216 int ei,wi;
217 for(short i=a;i<=e;i++)
218 {
219 ei=p_GetExp(p,i,r);
220 wi=w[i-a];
221 ai=ei*wi;
222 if (ai/ei!=wi) pSetm_error=TRUE;
223 ord += ai;
224 if (ord<ai) pSetm_error=TRUE;
225 }
226#endif
227 const int c = p_GetComp(p,r);
228
229 const short len_gen= o->data.am.len_gen;
230
231 if ((c > 0) && (c <= len_gen))
232 {
233 assume( w == o->data.am.weights_m );
234 assume( w[0] == len_gen );
235 ord += w[c];
236 }
237
238 p->exp[o->data.am.place] = ord;
239 break;
240 }
241 case ro_wp64:
242 {
243 int64 ord=0;
244 int a,e;
245 a=o->data.wp64.start;
246 e=o->data.wp64.end;
247 int64 *w=o->data.wp64.weights64;
248 int64 ei,wi,ai;
249 for(int i=a;i<=e;i++)
250 {
251 //Print("exp %d w %d \n",p_GetExp(p,i,r),(int)w[i-a]);
252 //ord+=((int64)p_GetExp(p,i,r))*w[i-a];
253 ei=(int64)p_GetExp(p,i,r);
254 wi=w[i-a];
255 ai=ei*wi;
256 if(ei!=0 && ai/ei!=wi)
257 {
259 #if SIZEOF_LONG == 4
260 Print("ai %lld, wi %lld\n",ai,wi);
261 #else
262 Print("ai %ld, wi %ld\n",ai,wi);
263 #endif
264 }
265 ord+=ai;
266 if (ord<ai)
267 {
269 #if SIZEOF_LONG == 4
270 Print("ai %lld, ord %lld\n",ai,ord);
271 #else
272 Print("ai %ld, ord %ld\n",ai,ord);
273 #endif
274 }
275 }
276 #if SIZEOF_LONG == 4
277 int64 mask=(int64)0x7fffffff;
278 long a_0=(long)(ord&mask); //2^31
279 long a_1=(long)(ord >>31 ); /*(ord/(mask+1));*/
280
281 //Print("mask: %x, ord: %d, a_0: %d, a_1: %d\n"
282 //,(int)mask,(int)ord,(int)a_0,(int)a_1);
283 //Print("mask: %d",mask);
284
285 p->exp[o->data.wp64.place]=a_1;
286 p->exp[o->data.wp64.place+1]=a_0;
287 #elif SIZEOF_LONG == 8
288 p->exp[o->data.wp64.place]=ord;
289 #endif
290// if(p_Setm_error) PrintS("***************************\n"
291// "***************************\n"
292// "**WARNING: overflow error**\n"
293// "***************************\n"
294// "***************************\n");
295 break;
296 }
297 case ro_cp:
298 {
299 int a,e;
300 a=o->data.cp.start;
301 e=o->data.cp.end;
302 int pl=o->data.cp.place;
303 for(int i=a;i<=e;i++) { p->exp[pl]=p_GetExp(p,i,r); pl++; }
304 break;
305 }
306 case ro_syzcomp:
307 {
308 long c=__p_GetComp(p,r);
309 long sc = c;
310 int* Components = (_componentsExternal ? _components :
311 o->data.syzcomp.Components);
312 long* ShiftedComponents = (_componentsExternal ? _componentsShifted:
313 o->data.syzcomp.ShiftedComponents);
314 if (ShiftedComponents != NULL)
315 {
316 assume(Components != NULL);
317 assume(c == 0 || Components[c] != 0);
318 sc = ShiftedComponents[Components[c]];
319 assume(c == 0 || sc != 0);
320 }
321 p->exp[o->data.syzcomp.place]=sc;
322 break;
323 }
324 case ro_syz:
325 {
326 const unsigned long c = __p_GetComp(p, r);
327 const short place = o->data.syz.place;
328 const int limit = o->data.syz.limit;
329
330 if (c > (unsigned long)limit)
331 p->exp[place] = o->data.syz.curr_index;
332 else if (c > 0)
333 {
334 assume( (1 <= c) && (c <= (unsigned long)limit) );
335 p->exp[place]= o->data.syz.syz_index[c];
336 }
337 else
338 {
339 assume(c == 0);
340 p->exp[place]= 0;
341 }
342 break;
343 }
344 // Prefix for Induced Schreyer ordering
345 case ro_isTemp: // Do nothing?? (to be removed into suffix later on...?)
346 {
347 assume(p != NULL);
348
349#ifndef SING_NDEBUG
350#if MYTEST
351 Print("p_Setm_General: ro_isTemp ord: pos: %d, p: ", pos); p_wrp(p, r);
352#endif
353#endif
354 int c = p_GetComp(p, r);
355
356 assume( c >= 0 );
357
358 // Let's simulate case ro_syz above....
359 // Should accumulate (by Suffix) and be a level indicator
360 const int* const pVarOffset = o->data.isTemp.pVarOffset;
361
362 assume( pVarOffset != NULL );
363
364 // TODO: Can this be done in the suffix???
365 for( int i = 1; i <= r->N; i++ ) // No v[0] here!!!
366 {
367 const int vo = pVarOffset[i];
368 if( vo != -1) // TODO: optimize: can be done once!
369 {
370 // Hans! Please don't break it again! p_SetExp(p, ..., r, vo) is correct:
371 p_SetExp(p, p_GetExp(p, i, r), r, vo); // copy put them verbatim
372 // Hans! Please don't break it again! p_GetExp(p, r, vo) is correct:
373 assume( p_GetExp(p, r, vo) == p_GetExp(p, i, r) ); // copy put them verbatim
374 }
375 }
376#ifndef SING_NDEBUG
377 for( int i = 1; i <= r->N; i++ ) // No v[0] here!!!
378 {
379 const int vo = pVarOffset[i];
380 if( vo != -1) // TODO: optimize: can be done once!
381 {
382 // Hans! Please don't break it again! p_GetExp(p, r, vo) is correct:
383 assume( p_GetExp(p, r, vo) == p_GetExp(p, i, r) ); // copy put them verbatim
384 }
385 }
386#if MYTEST
387// if( p->exp[o->data.isTemp.start] > 0 )
388 PrintS("after Values: "); p_wrp(p, r);
389#endif
390#endif
391 break;
392 }
393
394 // Suffix for Induced Schreyer ordering
395 case ro_is:
396 {
397#ifndef SING_NDEBUG
398#if MYTEST
399 Print("p_Setm_General: ro_is ord: pos: %d, p: ", pos); p_wrp(p, r);
400#endif
401#endif
402
403 assume(p != NULL);
404
405 int c = p_GetComp(p, r);
406
407 assume( c >= 0 );
408 const ideal F = o->data.is.F;
409 const int limit = o->data.is.limit;
410 assume( limit >= 0 );
411 const int start = o->data.is.start;
412
413 if( F != NULL && c > limit )
414 {
415#ifndef SING_NDEBUG
416#if MYTEST
417 Print("p_Setm_General: ro_is : in rSetm: pos: %d, c: %d > limit: %d\n", c, pos, limit);
418 PrintS("preComputed Values: ");
419 p_wrp(p, r);
420#endif
421#endif
422// if( c > limit ) // BUG???
423 p->exp[start] = 1;
424// else
425// p->exp[start] = 0;
426
427
428 c -= limit;
429 assume( c > 0 );
430 c--;
431
432 if( c >= IDELEMS(F) )
433 break;
434
435 assume( c < IDELEMS(F) ); // What about others???
436
437 const poly pp = F->m[c]; // get reference monomial!!!
438
439 if(pp == NULL)
440 break;
441
442 assume(pp != NULL);
443
444#ifndef SING_NDEBUG
445#if MYTEST
446 Print("Respective F[c - %d: %d] pp: ", limit, c);
447 p_wrp(pp, r);
448#endif
449#endif
450
451 const int end = o->data.is.end;
452 assume(start <= end);
453
454
455// const int st = o->data.isTemp.start;
456
457#ifndef SING_NDEBUG
458#if MYTEST
459 Print("p_Setm_General: is(-Temp-) :: c: %d, limit: %d, [st:%d] ===>>> %ld\n", c, limit, start, p->exp[start]);
460#endif
461#endif
462
463 // p_ExpVectorAdd(p, pp, r);
464
465 for( int i = start; i <= end; i++) // v[0] may be here...
466 p->exp[i] += pp->exp[i]; // !!!!!!!! ADD corresponding LT(F)
467
468 // p_MemAddAdjust(p, ri);
469 if (r->NegWeightL_Offset != NULL)
470 {
471 for (int i=r->NegWeightL_Size-1; i>=0; i--)
472 {
473 const int _i = r->NegWeightL_Offset[i];
474 if( start <= _i && _i <= end )
475 p->exp[_i] -= POLY_NEGWEIGHT_OFFSET;
476 }
477 }
478
479
480#ifndef SING_NDEBUG
481 const int* const pVarOffset = o->data.is.pVarOffset;
482
483 assume( pVarOffset != NULL );
484
485 for( int i = 1; i <= r->N; i++ ) // No v[0] here!!!
486 {
487 const int vo = pVarOffset[i];
488 if( vo != -1) // TODO: optimize: can be done once!
489 // Hans! Please don't break it again! p_GetExp(p/pp, r, vo) is correct:
490 assume( p_GetExp(p, r, vo) == (p_GetExp(p, i, r) + p_GetExp(pp, r, vo)) );
491 }
492 // TODO: how to check this for computed values???
493#if MYTEST
494 PrintS("Computed Values: "); p_wrp(p, r);
495#endif
496#endif
497 } else
498 {
499 p->exp[start] = 0; //!!!!????? where?????
500
501 const int* const pVarOffset = o->data.is.pVarOffset;
502
503 // What about v[0] - component: it will be added later by
504 // suffix!!!
505 // TODO: Test it!
506 const int vo = pVarOffset[0];
507 if( vo != -1 )
508 p->exp[vo] = c; // initial component v[0]!
509
510#ifndef SING_NDEBUG
511#if MYTEST
512 Print("ELSE p_Setm_General: ro_is :: c: %d <= limit: %d, vo: %d, exp: %d\n", c, limit, vo, p->exp[vo]);
513 p_wrp(p, r);
514#endif
515#endif
516 }
517
518 break;
519 }
520 default:
521 dReportError("wrong ord in rSetm:%d\n",o->ord_typ);
522 return;
523 }
524 pos++;
525 if (pos == r->OrdSize) return;
526 }
527 }
528}
long int64
Definition auxiliary.h:68
#define Print
Definition emacs.cc:80
int dReportError(const char *fmt,...)
Definition dError.cc:44
#define POLY_NEGWEIGHT_OFFSET
Definition monomials.h:236
STATIC_VAR int _componentsExternal
Definition p_polys.cc:148
STATIC_VAR long * _componentsShifted
Definition p_polys.cc:147
VAR BOOLEAN pSetm_error
Definition p_polys.cc:150
STATIC_VAR int * _components
Definition p_polys.cc:146
void p_wrp(poly p, ring lmRing, ring tailRing)
Definition polys0.cc:373
ro_typ ord_typ
Definition ring.h:225
@ ro_wp64
Definition ring.h:55
@ ro_syz
Definition ring.h:60
@ ro_cp
Definition ring.h:58
@ ro_is
Definition ring.h:61
@ ro_wp_neg
Definition ring.h:56
@ ro_isTemp
Definition ring.h:61
@ ro_am
Definition ring.h:54
@ ro_syzcomp
Definition ring.h:59
union sro_ord::@1 data
#define IDELEMS(i)

◆ p_Setm_Syz()

void p_Setm_Syz ( poly  p,
ring  r,
int Components,
long ShiftedComponents 
)

Definition at line 530 of file p_polys.cc.

531{
532 _components = Components;
533 _componentsShifted = ShiftedComponents;
535 p_Setm_General(p, r);
537}

◆ p_Setm_TotalDegree()

void p_Setm_TotalDegree ( poly  p,
const ring  r 
)

Definition at line 546 of file p_polys.cc.

547{
549 p->exp[r->pOrdIndex] = p_Totaldegree(p, r);
550}

◆ p_Setm_WFirstTotalDegree()

void p_Setm_WFirstTotalDegree ( poly  p,
const ring  r 
)

Definition at line 553 of file p_polys.cc.

554{
556 p->exp[r->pOrdIndex] = p_WFirstTotalDegree(p, r);
557}
long p_WFirstTotalDegree(poly p, const ring r)
Definition p_polys.cc:595

◆ p_SetModDeg()

void p_SetModDeg ( intvec w,
ring  r 
)

Definition at line 3694 of file p_polys.cc.

3695{
3696 if (w!=NULL)
3697 {
3698 r->pModW = w;
3699 pOldFDeg = r->pFDeg;
3700 pOldLDeg = r->pLDeg;
3701 pOldLexOrder = r->pLexOrder;
3703 r->pLexOrder = TRUE;
3704 }
3705 else
3706 {
3707 r->pModW = NULL;
3709 r->pLexOrder = pOldLexOrder;
3710 }
3711}
STATIC_VAR pLDegProc pOldLDeg
Definition p_polys.cc:3682
void pRestoreDegProcs(ring r, pFDegProc old_FDeg, pLDegProc old_lDeg)
Definition p_polys.cc:3670
STATIC_VAR BOOLEAN pOldLexOrder
Definition p_polys.cc:3683
STATIC_VAR pFDegProc pOldFDeg
Definition p_polys.cc:3681
void pSetDegProcs(ring r, pFDegProc new_FDeg, pLDegProc new_lDeg)
Definition p_polys.cc:3658
static long pModDeg(poly p, ring r)
Definition p_polys.cc:3685

◆ p_Shift()

void p_Shift ( poly *  p,
int  i,
const ring  r 
)

shifts components of the vector p by i

Definition at line 4756 of file p_polys.cc.

4757{
4758 poly qp1 = *p,qp2 = *p;/*working pointers*/
4759 int j = p_MaxComp(*p,r),k = p_MinComp(*p,r);
4760
4761 if (j+i < 0) return ;
4762 BOOLEAN toPoly= ((j == -i) && (j == k));
4763 while (qp1 != NULL)
4764 {
4765 if (toPoly || (__p_GetComp(qp1,r)+i > 0))
4766 {
4767 p_AddComp(qp1,i,r);
4768 p_SetmComp(qp1,r);
4769 qp2 = qp1;
4770 pIter(qp1);
4771 }
4772 else
4773 {
4774 if (qp2 == *p)
4775 {
4776 pIter(*p);
4777 p_LmDelete(&qp2,r);
4778 qp2 = *p;
4779 qp1 = *p;
4780 }
4781 else
4782 {
4783 qp2->next = qp1->next;
4784 if (qp1!=NULL) p_LmDelete(&qp1,r);
4785 qp1 = qp2->next;
4786 }
4787 }
4788 }
4789}
return
static long p_MinComp(poly p, ring lmRing, ring tailRing)
Definition p_polys.h:313
static unsigned long p_AddComp(poly p, unsigned long v, ring r)
Definition p_polys.h:447
static long p_MaxComp(poly p, ring lmRing, ring tailRing)
Definition p_polys.h:292

◆ p_SimpleContent()

void p_SimpleContent ( poly  ph,
int  smax,
const ring  r 
)

Definition at line 2568 of file p_polys.cc.

2569{
2570 if(TEST_OPT_CONTENTSB) return;
2571 if (ph==NULL) return;
2572 if (pNext(ph)==NULL)
2573 {
2574 p_SetCoeff(ph,n_Init(1,r->cf),r);
2575 return;
2576 }
2577 if (pNext(pNext(ph))==NULL)
2578 {
2579 return;
2580 }
2581 if (!(rField_is_Q(r))
2582 && (!rField_is_Q_a(r))
2583 && (!rField_is_Zp_a(r))
2584 && (!rField_is_Z(r))
2585 )
2586 {
2587 return;
2588 }
2589 number d=p_InitContent(ph,r);
2590 number h=d;
2591 if (n_Size(d,r->cf)<=smax)
2592 {
2593 n_Delete(&h,r->cf);
2594 //if (TEST_OPT_PROT) PrintS("G");
2595 return;
2596 }
2597
2598 poly p=ph;
2599 if (smax==1) smax=2;
2600 while (p!=NULL)
2601 {
2602#if 1
2603 d=n_SubringGcd(h,pGetCoeff(p),r->cf);
2604 n_Delete(&h,r->cf);
2605 h = d;
2606#else
2607 n_InpGcd(h,pGetCoeff(p),r->cf);
2608#endif
2609 if(n_Size(h,r->cf)<smax)
2610 {
2611 //if (TEST_OPT_PROT) PrintS("g");
2612 n_Delete(&h,r->cf);
2613 return;
2614 }
2615 pIter(p);
2616 }
2617 p = ph;
2618 if (!n_GreaterZero(pGetCoeff(p),r->cf)) h=n_InpNeg(h,r->cf);
2619 if(n_IsOne(h,r->cf))
2620 {
2621 n_Delete(&h,r->cf);
2622 return;
2623 }
2624 if (TEST_OPT_PROT) PrintS("c");
2625 while (p!=NULL)
2626 {
2627#if 1
2628 d = n_ExactDiv(pGetCoeff(p),h,r->cf);
2629 p_SetCoeff(p,d,r);
2630#else
2631 STATISTIC(n_ExactDiv); nlInpExactDiv(pGetCoeff(p),h,r->cf); // no such function... ?
2632#endif
2633 pIter(p);
2634 }
2635 n_Delete(&h,r->cf);
2636}
#define TEST_OPT_PROT
Definition options.h:105

◆ p_Size()

int p_Size ( poly  p,
const ring  r 
)

Definition at line 3257 of file p_polys.cc.

3258{
3259 int count = 0;
3260 if (r->cf->has_simple_Alloc)
3261 return pLength(p);
3262 while ( p != NULL )
3263 {
3264 count+= n_Size( pGetCoeff( p ), r->cf );
3265 pIter( p );
3266 }
3267 return count;
3268}
int status int void size_t count
Definition si_signals.h:69

◆ p_Split()

void p_Split ( poly  p,
poly *  h 
)

Definition at line 1321 of file p_polys.cc.

1322{
1323 *h=pNext(p);
1324 pNext(p)=NULL;
1325}

◆ p_SplitAndReversePoly()

static void p_SplitAndReversePoly ( poly  p,
int  n,
poly *  non_zero,
poly *  zero,
const ring  r 
)
static

Definition at line 3851 of file p_polys.cc.

3852{
3853 if (p == NULL)
3854 {
3855 *non_zero = NULL;
3856 *zero = NULL;
3857 return;
3858 }
3859 spolyrec sz;
3860 poly z, n_z, next;
3861 z = &sz;
3862 n_z = NULL;
3863
3864 while(p != NULL)
3865 {
3866 next = pNext(p);
3867 if (p_GetExp(p, n,r) == 0)
3868 {
3869 pNext(z) = p;
3870 pIter(z);
3871 }
3872 else
3873 {
3874 pNext(p) = n_z;
3875 n_z = p;
3876 }
3877 p = next;
3878 }
3879 pNext(z) = NULL;
3880 *zero = pNext(&sz);
3881 *non_zero = n_z;
3882}

◆ p_Sub()

poly p_Sub ( poly  p1,
poly  p2,
const ring  r 
)

Definition at line 1994 of file p_polys.cc.

1995{
1996 return p_Add_q(p1, p_Neg(p2,r),r);
1997}

◆ p_Subst()

poly p_Subst ( poly  p,
int  n,
poly  e,
const ring  r 
)

Definition at line 3980 of file p_polys.cc.

3981{
3982#ifdef HAVE_SHIFTBBA
3983 // also don't even use p_Subst0 for Letterplace
3984 if (rIsLPRing(r))
3985 {
3986 poly subst = p_LPSubst(p, n, e, r);
3987 p_Delete(&p, r);
3988 return subst;
3989 }
3990#endif
3991
3992 if (e == NULL) return p_Subst0(p, n,r);
3993
3994 if (p_IsConstant(e,r))
3995 {
3996 if (n_IsOne(pGetCoeff(e),r->cf)) return p_Subst1(p,n,r);
3997 else return p_Subst2(p, n, pGetCoeff(e),r);
3998 }
3999
4000#ifdef HAVE_PLURAL
4001 if (rIsPluralRing(r))
4002 {
4003 return nc_pSubst(p,n,e,r);
4004 }
4005#endif
4006
4007 int exponent,i;
4008 poly h, res, m;
4009 int *me,*ee;
4010 number nu,nu1;
4011
4012 me=(int *)omAlloc((rVar(r)+1)*sizeof(int));
4013 ee=(int *)omAlloc((rVar(r)+1)*sizeof(int));
4014 if (e!=NULL) p_GetExpV(e,ee,r);
4015 res=NULL;
4016 h=p;
4017 while (h!=NULL)
4018 {
4019 if ((e!=NULL) || (p_GetExp(h,n,r)==0))
4020 {
4021 m=p_Head(h,r);
4022 p_GetExpV(m,me,r);
4023 exponent=me[n];
4024 me[n]=0;
4025 for(i=rVar(r);i>0;i--)
4026 me[i]+=exponent*ee[i];
4027 p_SetExpV(m,me,r);
4028 if (e!=NULL)
4029 {
4030 n_Power(pGetCoeff(e),exponent,&nu,r->cf);
4031 nu1=n_Mult(pGetCoeff(m),nu,r->cf);
4032 n_Delete(&nu,r->cf);
4033 p_SetCoeff(m,nu1,r);
4034 }
4035 res=p_Add_q(res,m,r);
4036 }
4037 p_LmDelete(&h,r);
4038 }
4039 omFreeSize((ADDRESS)me,(rVar(r)+1)*sizeof(int));
4040 omFreeSize((ADDRESS)ee,(rVar(r)+1)*sizeof(int));
4041 return res;
4042}
CanonicalForm subst(const CanonicalForm &f, const CFList &a, const CFList &b, const CanonicalForm &Rstar, bool isFunctionField)
poly nc_pSubst(poly p, int n, poly e, const ring r)
substitute the n-th variable by e in p destroy p e is not a constant
static poly p_Subst0(poly p, int n, const ring r)
Definition p_polys.cc:3955
static poly p_Subst1(poly p, int n, const ring r)
Definition p_polys.cc:3887
static poly p_Subst2(poly p, int n, number e, const ring r)
Definition p_polys.cc:3914
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
Definition ring.h:405
poly p_LPSubst(poly p, int n, poly e, const ring r)
Definition shiftop.cc:912

◆ p_Subst0()

static poly p_Subst0 ( poly  p,
int  n,
const ring  r 
)
static

Definition at line 3955 of file p_polys.cc.

3956{
3957 spolyrec res;
3958 poly h = &res;
3959 pNext(h) = p;
3960
3961 while (pNext(h)!=NULL)
3962 {
3963 if (p_GetExp(pNext(h),n,r)!=0)
3964 {
3965 p_LmDelete(&pNext(h),r);
3966 }
3967 else
3968 {
3969 pIter(h);
3970 }
3971 }
3972 p_Test(pNext(&res),r);
3973 return pNext(&res);
3974}

◆ p_Subst1()

static poly p_Subst1 ( poly  p,
int  n,
const ring  r 
)
static

Definition at line 3887 of file p_polys.cc.

3888{
3889 poly qq=NULL, result = NULL;
3890 poly zero=NULL, non_zero=NULL;
3891
3892 // reverse, so that add is likely to be linear
3893 p_SplitAndReversePoly(p, n, &non_zero, &zero,r);
3894
3895 while (non_zero != NULL)
3896 {
3897 assume(p_GetExp(non_zero, n,r) != 0);
3898 qq = non_zero;
3899 pIter(non_zero);
3900 qq->next = NULL;
3901 p_SetExp(qq,n,0,r);
3902 p_Setm(qq,r);
3903 result = p_Add_q(result,qq,r);
3904 }
3905 p = p_Add_q(result, zero,r);
3906 p_Test(p,r);
3907 return p;
3908}
static void p_SplitAndReversePoly(poly p, int n, poly *non_zero, poly *zero, const ring r)
Definition p_polys.cc:3851

◆ p_Subst2()

static poly p_Subst2 ( poly  p,
int  n,
number  e,
const ring  r 
)
static

Definition at line 3914 of file p_polys.cc.

3915{
3916 assume( ! n_IsZero(e,r->cf) );
3917 poly qq,result = NULL;
3918 number nn, nm;
3919 poly zero, non_zero;
3920
3921 // reverse, so that add is likely to be linear
3922 p_SplitAndReversePoly(p, n, &non_zero, &zero,r);
3923
3924 while (non_zero != NULL)
3925 {
3926 assume(p_GetExp(non_zero, n, r) != 0);
3927 qq = non_zero;
3928 pIter(non_zero);
3929 qq->next = NULL;
3930 n_Power(e, p_GetExp(qq, n, r), &nn,r->cf);
3931 nm = n_Mult(nn, pGetCoeff(qq),r->cf);
3932#ifdef HAVE_RINGS
3933 if (n_IsZero(nm,r->cf))
3934 {
3935 p_LmFree(&qq,r);
3936 n_Delete(&nm,r->cf);
3937 }
3938 else
3939#endif
3940 {
3941 p_SetCoeff(qq, nm,r);
3942 p_SetExp(qq, n, 0,r);
3943 p_Setm(qq,r);
3944 result = p_Add_q(result,qq,r);
3945 }
3946 n_Delete(&nn,r->cf);
3947 }
3948 p = p_Add_q(result, zero,r);
3949 p_Test(p,r);
3950 return p;
3951}

◆ p_TakeOutComp() [1/2]

poly p_TakeOutComp ( poly *  p,
int  k,
const ring  r 
)

Definition at line 3439 of file p_polys.cc.

3440{
3441 poly q = *p,qq=NULL,result = NULL;
3442 unsigned long kk=(unsigned long)k;
3443
3444 if (q==NULL) return NULL;
3446 if (__p_GetComp(q,r)==kk)
3447 {
3448 result = q;
3450 {
3451 do
3452 {
3453 p_SetComp(q,0,r);
3454 p_SetmComp(q,r);
3455 qq = q;
3456 pIter(q);
3457 }
3458 while ((q!=NULL) && (__p_GetComp(q,r)==kk));
3459 }
3460 else
3461 {
3462 do
3463 {
3464 p_SetComp(q,0,r);
3465 qq = q;
3466 pIter(q);
3467 }
3468 while ((q!=NULL) && (__p_GetComp(q,r)==kk));
3469 }
3470
3471 *p = q;
3472 pNext(qq) = NULL;
3473 }
3474 if (q==NULL) return result;
3475 if (__p_GetComp(q,r) > kk)
3476 {
3477 p_SubComp(q,1,r);
3478 if (use_setmcomp) p_SetmComp(q,r);
3479 }
3480 poly pNext_q;
3481 while ((pNext_q=pNext(q))!=NULL)
3482 {
3483 unsigned long c=__p_GetComp(pNext_q,r);
3484 if (/*__p_GetComp(pNext_q,r)*/c==kk)
3485 {
3486 if (result==NULL)
3487 {
3488 result = pNext_q;
3489 qq = result;
3490 }
3491 else
3492 {
3493 pNext(qq) = pNext_q;
3494 pIter(qq);
3495 }
3496 pNext(q) = pNext(pNext_q);
3497 pNext(qq) =NULL;
3498 p_SetComp(qq,0,r);
3499 if (use_setmcomp) p_SetmComp(qq,r);
3500 }
3501 else
3502 {
3503 /*pIter(q);*/ q=pNext_q;
3504 if (/*__p_GetComp(q,r)*/c > kk)
3505 {
3506 p_SubComp(q,1,r);
3507 if (use_setmcomp) p_SetmComp(q,r);
3508 }
3509 }
3510 }
3511 return result;
3512}
BOOLEAN rOrd_SetCompRequiresSetm(const ring r)
return TRUE if p_SetComp requires p_Setm
Definition ring.cc:1996

◆ p_TakeOutComp() [2/2]

void p_TakeOutComp ( poly *  r_p,
long  comp,
poly *  r_q,
int lq,
const ring  r 
)

Splits *p into two polys: *q which consists of all monoms with component == comp and *p of all other monoms *lq == pLength(*q) On return all components pf *q == 0.

Definition at line 3516 of file p_polys.cc.

3517{
3518 spolyrec pp, qq;
3519 poly p, q, p_prev;
3520 int l = 0;
3521
3522#ifndef SING_NDEBUG
3523 int lp = pLength(*r_p);
3524#endif
3525
3526 pNext(&pp) = *r_p;
3527 p = *r_p;
3528 p_prev = &pp;
3529 q = &qq;
3530
3531 while(p != NULL)
3532 {
3533 while (__p_GetComp(p,r) == comp)
3534 {
3535 pNext(q) = p;
3536 pIter(q);
3537 p_SetComp(p, 0,r);
3538 p_SetmComp(p,r);
3539 pIter(p);
3540 l++;
3541 if (p == NULL)
3542 {
3543 pNext(p_prev) = NULL;
3544 goto Finish;
3545 }
3546 }
3547 pNext(p_prev) = p;
3548 p_prev = p;
3549 pIter(p);
3550 }
3551
3552 Finish:
3553 pNext(q) = NULL;
3554 *r_p = pNext(&pp);
3555 *r_q = pNext(&qq);
3556 *lq = l;
3557#ifndef SING_NDEBUG
3558 assume(pLength(*r_p) + pLength(*r_q) == lp);
3559#endif
3560 p_Test(*r_p,r);
3561 p_Test(*r_q,r);
3562}
int comp(const CanonicalForm &A, const CanonicalForm &B)
compare polynomials
Definition lq.h:40

◆ p_TwoMonPower()

static poly p_TwoMonPower ( poly  p,
int  exp,
const ring  r 
)
static

Definition at line 2110 of file p_polys.cc.

2111{
2112 int eh, e;
2113 long al;
2114 poly *a;
2115 poly tail, b, res, h;
2116 number x;
2117 number *bin = pnBin(exp,r);
2118
2119 tail = pNext(p);
2120 if (bin == NULL)
2121 {
2122 p_MonPower(p,exp,r);
2123 p_MonPower(tail,exp,r);
2124 p_Test(p,r);
2125 return p;
2126 }
2127 eh = exp >> 1;
2128 al = (exp + 1) * sizeof(poly);
2129 a = (poly *)omAlloc(al);
2130 a[1] = p;
2131 for (e=1; e<exp; e++)
2132 {
2133 a[e+1] = p_MonMultC(a[e],p,r);
2134 }
2135 res = a[exp];
2136 b = p_Head(tail,r);
2137 for (e=exp-1; e>eh; e--)
2138 {
2139 h = a[e];
2140 x = n_Mult(bin[exp-e],pGetCoeff(h),r->cf);
2141 p_SetCoeff(h,x,r);
2142 p_MonMult(h,b,r);
2143 res = pNext(res) = h;
2144 p_MonMult(b,tail,r);
2145 }
2146 for (e=eh; e!=0; e--)
2147 {
2148 h = a[e];
2149 x = n_Mult(bin[e],pGetCoeff(h),r->cf);
2150 p_SetCoeff(h,x,r);
2151 p_MonMult(h,b,r);
2152 res = pNext(res) = h;
2153 p_MonMult(b,tail,r);
2154 }
2155 p_LmDelete(&tail,r);
2156 pNext(res) = b;
2157 pNext(b) = NULL;
2158 res = a[exp];
2159 omFreeSize((ADDRESS)a, al);
2160 pnFreeBin(bin, exp, r->cf);
2161// tail=res;
2162// while((tail!=NULL)&&(pNext(tail)!=NULL))
2163// {
2164// if(nIsZero(pGetCoeff(pNext(tail))))
2165// {
2166// pLmDelete(&pNext(tail));
2167// }
2168// else
2169// pIter(tail);
2170// }
2171 p_Test(res,r);
2172 return res;
2173}
static number * pnBin(int exp, const ring r)
Definition p_polys.cc:2062
static void pnFreeBin(number *bin, int exp, const coeffs r)
Definition p_polys.cc:2093
static poly p_MonMultC(poly p, poly q, const ring rr)
Definition p_polys.cc:2048
static void p_MonMult(poly p, poly q, const ring r)
Definition p_polys.cc:2028

◆ p_Var()

int p_Var ( poly  m,
const ring  r 
)

Definition at line 4706 of file p_polys.cc.

4707{
4708 if (m==NULL) return 0;
4709 if (pNext(m)!=NULL) return 0;
4710 int i,e=0;
4711 for (i=rVar(r); i>0; i--)
4712 {
4713 int exp=p_GetExp(m,i,r);
4714 if (exp==1)
4715 {
4716 if (e==0) e=i;
4717 else return 0;
4718 }
4719 else if (exp!=0)
4720 {
4721 return 0;
4722 }
4723 }
4724 return e;
4725}

◆ p_Vec2Array()

void p_Vec2Array ( poly  v,
poly *  p,
int  len,
const ring  r 
)

vector to already allocated array (len>=p_MaxComp(v,r))

julia: vector to already allocated array (len=p_MaxComp(v,r))

Definition at line 3616 of file p_polys.cc.

3617{
3618 poly h;
3619 int k;
3620
3621 for(int i=len-1;i>=0;i--) p[i]=NULL;
3622 while (v!=NULL)
3623 {
3624 h=p_Head(v,r);
3625 k=__p_GetComp(h,r);
3626 if (k>len) { Werror("wrong rank:%d, should be %d",len,k); }
3627 else
3628 {
3629 p_SetComp(h,0,r);
3630 p_Setm(h,r);
3631 pNext(h)=p[k-1];p[k-1]=h;
3632 }
3633 pIter(v);
3634 }
3635 for(int i=len-1;i>=0;i--)
3636 {
3637 if (p[i]!=NULL) p[i]=pReverse(p[i]);
3638 }
3639}

◆ p_Vec2Poly()

poly p_Vec2Poly ( poly  v,
int  k,
const ring  r 
)

Definition at line 3594 of file p_polys.cc.

3595{
3596 poly h;
3597 poly res=NULL;
3598 long unsigned kk=k;
3599
3600 while (v!=NULL)
3601 {
3602 if (__p_GetComp(v,r)==kk)
3603 {
3604 h=p_Head(v,r);
3605 p_SetComp(h,0,r);
3606 pNext(h)=res;res=h;
3607 }
3608 pIter(v);
3609 }
3610 if (res!=NULL) res=pReverse(res);
3611 return res;
3612}

◆ p_Vec2Polys()

void p_Vec2Polys ( poly  v,
poly **  p,
int len,
const ring  r 
)

Definition at line 3646 of file p_polys.cc.

3647{
3648 *len=p_MaxComp(v,r);
3649 if (*len==0) *len=1;
3650 *p=(poly*)omAlloc((*len)*sizeof(poly));
3651 p_Vec2Array(v,*p,*len,r);
3652}
void p_Vec2Array(poly v, poly *p, int len, const ring r)
vector to already allocated array (len>=p_MaxComp(v,r))
Definition p_polys.cc:3616

◆ p_VectorHasUnit()

void p_VectorHasUnit ( poly  p,
int k,
int len,
const ring  r 
)

Definition at line 3406 of file p_polys.cc.

3407{
3408 poly q=p,qq;
3409 int j=0;
3410 long unsigned i;
3411
3412 *len = 0;
3413 while (q!=NULL)
3414 {
3415 if (p_LmIsConstantComp(q,r))
3416 {
3417 i = __p_GetComp(q,r);
3418 qq = p;
3419 while ((qq != q) && (__p_GetComp(qq,r) != i)) pIter(qq);
3420 if (qq == q)
3421 {
3422 j = 0;
3423 while (qq!=NULL)
3424 {
3425 if (__p_GetComp(qq,r)==i) j++;
3426 pIter(qq);
3427 }
3428 if ((*len == 0) || (j<*len))
3429 {
3430 *len = j;
3431 *k = i;
3432 }
3433 }
3434 }
3435 pIter(q);
3436 }
3437}
static BOOLEAN p_LmIsConstantComp(const poly p, const ring r)
Definition p_polys.h:1006

◆ p_VectorHasUnitB()

BOOLEAN p_VectorHasUnitB ( poly  p,
int k,
const ring  r 
)

Definition at line 3383 of file p_polys.cc.

3384{
3385 poly q=p,qq;
3386 long unsigned i;
3387
3388 while (q!=NULL)
3389 {
3390 if (p_LmIsConstantComp(q,r))
3391 {
3392 i = __p_GetComp(q,r);
3393 qq = p;
3394 while ((qq != q) && (__p_GetComp(qq,r) != i)) pIter(qq);
3395 if (qq == q)
3396 {
3397 *k = i;
3398 return TRUE;
3399 }
3400 }
3401 pIter(q);
3402 }
3403 return FALSE;
3404}

◆ p_WDegree()

long p_WDegree ( poly  p,
const ring  r 
)

Definition at line 715 of file p_polys.cc.

716{
717 if (r->firstwv==NULL) return p_Totaldegree(p, r);
719 int i;
720 long j =0;
721
722 for(i=1;i<=r->firstBlockEnds;i++)
723 j+=p_GetExp(p, i, r)*r->firstwv[i-1];
724
725 for (;i<=rVar(r);i++)
726 j+=p_GetExp(p,i, r)*p_Weight(i, r);
727
728 return j;
729}
int p_Weight(int i, const ring r)
Definition p_polys.cc:706

◆ p_Weight()

int p_Weight ( int  i,
const ring  r 
)

Definition at line 706 of file p_polys.cc.

707{
708 if ((r->firstwv==NULL) || (i>r->firstBlockEnds))
709 {
710 return 1;
711 }
712 return r->firstwv[i-1];
713}

◆ p_WFirstTotalDegree()

long p_WFirstTotalDegree ( poly  p,
const ring  r 
)

Definition at line 595 of file p_polys.cc.

596{
597 int i;
598 long sum = 0;
599
600 for (i=1; i<= r->firstBlockEnds; i++)
601 {
602 sum += p_GetExp(p, i, r)*r->firstwv[i-1];
603 }
604 return sum;
605}

◆ p_WTotaldegree()

long p_WTotaldegree ( poly  p,
const ring  r 
)

Definition at line 612 of file p_polys.cc.

613{
615 int i, k;
616 long j =0;
617
618 // iterate through each block:
619 for (i=0;r->order[i]!=0;i++)
620 {
621 int b0=r->block0[i];
622 int b1=r->block1[i];
623 switch(r->order[i])
624 {
625 case ringorder_M:
626 for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++)
627 { // in jedem block:
628 j+= p_GetExp(p,k,r)*r->wvhdl[i][k - b0 /*r->block0[i]*/]*r->OrdSgn;
629 }
630 break;
631 case ringorder_am:
632 b1=si_min(b1,r->N); /* no break, continue as ringorder_a*/
633 case ringorder_a:
634 for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++)
635 { // only one line
636 j+= p_GetExp(p,k,r)*r->wvhdl[i][k - b0 /*r->block0[i]*/];
637 }
638 return j*r->OrdSgn;
639 case ringorder_wp:
640 case ringorder_ws:
641 case ringorder_Wp:
642 case ringorder_Ws:
643 for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++)
644 { // in jedem block:
645 j+= p_GetExp(p,k,r)*r->wvhdl[i][k - b0 /*r->block0[i]*/];
646 }
647 break;
648 case ringorder_lp:
649 case ringorder_ls:
650 case ringorder_rs:
651 case ringorder_dp:
652 case ringorder_ds:
653 case ringorder_Dp:
654 case ringorder_Ds:
655 case ringorder_rp:
656 for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++)
657 {
658 j+= p_GetExp(p,k,r);
659 }
660 break;
661 case ringorder_a64:
662 {
663 int64* w=(int64*)r->wvhdl[i];
664 for (k=0;k<=(b1 /*r->block1[i]*/ - b0 /*r->block0[i]*/);k++)
665 {
666 //there should be added a line which checks if w[k]>2^31
667 j+= p_GetExp(p,k+1, r)*(long)w[k];
668 }
669 //break;
670 return j;
671 }
672 default:
673 #if 0
674 case ringorder_c: /* nothing to do*/
675 case ringorder_C: /* nothing to do*/
676 case ringorder_S: /* nothing to do*/
677 case ringorder_s: /* nothing to do*/
678 case ringorder_IS: /* nothing to do */
679 case ringorder_unspec: /* to make clang happy, does not occur*/
680 case ringorder_no: /* to make clang happy, does not occur*/
681 case ringorder_L: /* to make clang happy, does not occur*/
682 case ringorder_aa: /* ignored by p_WTotaldegree*/
683 #endif
684 break;
685 /* no default: all orderings covered */
686 }
687 }
688 return j;
689}
#define ringorder_rp
Definition ring.h:99
@ ringorder_a
Definition ring.h:70
@ ringorder_am
Definition ring.h:89
@ ringorder_a64
for int64 weights
Definition ring.h:71
@ ringorder_C
Definition ring.h:73
@ ringorder_S
S?
Definition ring.h:75
@ ringorder_ds
Definition ring.h:85
@ ringorder_Dp
Definition ring.h:80
@ ringorder_unspec
Definition ring.h:95
@ ringorder_L
Definition ring.h:90
@ ringorder_Ds
Definition ring.h:86
@ ringorder_dp
Definition ring.h:78
@ ringorder_c
Definition ring.h:72
@ ringorder_aa
for idElimination, like a, except pFDeg, pWeigths ignore it
Definition ring.h:92
@ ringorder_no
Definition ring.h:69
@ ringorder_Wp
Definition ring.h:82
@ ringorder_ws
Definition ring.h:87
@ ringorder_Ws
Definition ring.h:88
@ ringorder_IS
Induced (Schreyer) ordering.
Definition ring.h:94
@ ringorder_ls
degree, ip
Definition ring.h:84
@ ringorder_s
s?
Definition ring.h:76
@ ringorder_wp
Definition ring.h:81
@ ringorder_M
Definition ring.h:74
#define ringorder_rs
Definition ring.h:100

◆ pEnlargeSet()

void pEnlargeSet ( poly **  p,
int  l,
int  increment 
)

Definition at line 3717 of file p_polys.cc.

3718{
3719 poly* h;
3720
3721 if (increment==0) return;
3722 if (*p==NULL)
3723 {
3724 h=(poly*)omAlloc0(increment*sizeof(poly));
3725 }
3726 else
3727 {
3728 h=(poly*)omReallocSize((poly*)*p,l*sizeof(poly),(l+increment)*sizeof(poly));
3729 if (increment>0)
3730 {
3731 memset(&(h[l]),0,increment*sizeof(poly));
3732 }
3733 }
3734 *p=h;
3735}
#define omReallocSize(addr, o_size, size)

◆ pLDeg0()

long pLDeg0 ( poly  p,
int l,
const ring  r 
)

Definition at line 740 of file p_polys.cc.

741{
742 p_CheckPolyRing(p, r);
743 long unsigned k= p_GetComp(p, r);
744 int ll=1;
745
746 if (k > 0)
747 {
748 while ((pNext(p)!=NULL) && (__p_GetComp(pNext(p), r)==k))
749 {
750 pIter(p);
751 ll++;
752 }
753 }
754 else
755 {
756 while (pNext(p)!=NULL)
757 {
758 pIter(p);
759 ll++;
760 }
761 }
762 *l=ll;
763 return r->pFDeg(p, r);
764}

◆ pLDeg0c()

long pLDeg0c ( poly  p,
int l,
const ring  r 
)

Definition at line 771 of file p_polys.cc.

772{
773 assume(p!=NULL);
774 p_Test(p,r);
775 p_CheckPolyRing(p, r);
776 long o;
777 int ll=1;
778
779 if (! rIsSyzIndexRing(r))
780 {
781 while (pNext(p) != NULL)
782 {
783 pIter(p);
784 ll++;
785 }
786 o = r->pFDeg(p, r);
787 }
788 else
789 {
790 long unsigned curr_limit = rGetCurrSyzLimit(r);
791 poly pp = p;
792 while ((p=pNext(p))!=NULL)
793 {
794 if (__p_GetComp(p, r)<=curr_limit/*syzComp*/)
795 ll++;
796 else break;
797 pp = p;
798 }
799 p_Test(pp,r);
800 o = r->pFDeg(pp, r);
801 }
802 *l=ll;
803 return o;
804}

◆ pLDeg1()

long pLDeg1 ( poly  p,
int l,
const ring  r 
)

Definition at line 842 of file p_polys.cc.

843{
844 p_CheckPolyRing(p, r);
845 long unsigned k= p_GetComp(p, r);
846 int ll=1;
847 long t,max;
848
849 max=r->pFDeg(p, r);
850 if (k > 0)
851 {
852 while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
853 {
854 t=r->pFDeg(p, r);
855 if (t>max) max=t;
856 ll++;
857 }
858 }
859 else
860 {
861 while ((p=pNext(p))!=NULL)
862 {
863 t=r->pFDeg(p, r);
864 if (t>max) max=t;
865 ll++;
866 }
867 }
868 *l=ll;
869 return max;
870}

◆ pLDeg1_Deg()

long pLDeg1_Deg ( poly  p,
int l,
const ring  r 
)

Definition at line 911 of file p_polys.cc.

912{
913 assume(r->pFDeg == p_Deg);
914 p_CheckPolyRing(p, r);
915 long unsigned k= p_GetComp(p, r);
916 int ll=1;
917 long t,max;
918
919 max=p_GetOrder(p, r);
920 if (k > 0)
921 {
922 while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
923 {
924 t=p_GetOrder(p, r);
925 if (t>max) max=t;
926 ll++;
927 }
928 }
929 else
930 {
931 while ((p=pNext(p))!=NULL)
932 {
933 t=p_GetOrder(p, r);
934 if (t>max) max=t;
935 ll++;
936 }
937 }
938 *l=ll;
939 return max;
940}

◆ pLDeg1_Totaldegree()

long pLDeg1_Totaldegree ( poly  p,
int l,
const ring  r 
)

Definition at line 976 of file p_polys.cc.

977{
978 p_CheckPolyRing(p, r);
979 long unsigned k= p_GetComp(p, r);
980 int ll=1;
981 long t,max;
982
983 max=p_Totaldegree(p, r);
984 if (k > 0)
985 {
986 while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
987 {
988 t=p_Totaldegree(p, r);
989 if (t>max) max=t;
990 ll++;
991 }
992 }
993 else
994 {
995 while ((p=pNext(p))!=NULL)
996 {
997 t=p_Totaldegree(p, r);
998 if (t>max) max=t;
999 ll++;
1000 }
1001 }
1002 *l=ll;
1003 return max;
1004}

◆ pLDeg1_WFirstTotalDegree()

long pLDeg1_WFirstTotalDegree ( poly  p,
int l,
const ring  r 
)

Definition at line 1039 of file p_polys.cc.

1040{
1041 p_CheckPolyRing(p, r);
1042 long unsigned k= p_GetComp(p, r);
1043 int ll=1;
1044 long t,max;
1045
1047 if (k > 0)
1048 {
1049 while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
1050 {
1051 t=p_WFirstTotalDegree(p, r);
1052 if (t>max) max=t;
1053 ll++;
1054 }
1055 }
1056 else
1057 {
1058 while ((p=pNext(p))!=NULL)
1059 {
1060 t=p_WFirstTotalDegree(p, r);
1061 if (t>max) max=t;
1062 ll++;
1063 }
1064 }
1065 *l=ll;
1066 return max;
1067}

◆ pLDeg1c()

long pLDeg1c ( poly  p,
int l,
const ring  r 
)

Definition at line 878 of file p_polys.cc.

879{
880 p_CheckPolyRing(p, r);
881 int ll=1;
882 long t,max;
883
884 max=r->pFDeg(p, r);
885 if (rIsSyzIndexRing(r))
886 {
887 long unsigned limit = rGetCurrSyzLimit(r);
888 while ((p=pNext(p))!=NULL)
889 {
890 if (__p_GetComp(p, r)<=limit)
891 {
892 if ((t=r->pFDeg(p, r))>max) max=t;
893 ll++;
894 }
895 else break;
896 }
897 }
898 else
899 {
900 while ((p=pNext(p))!=NULL)
901 {
902 if ((t=r->pFDeg(p, r))>max) max=t;
903 ll++;
904 }
905 }
906 *l=ll;
907 return max;
908}

◆ pLDeg1c_Deg()

long pLDeg1c_Deg ( poly  p,
int l,
const ring  r 
)

Definition at line 942 of file p_polys.cc.

943{
944 assume(r->pFDeg == p_Deg);
945 p_CheckPolyRing(p, r);
946 int ll=1;
947 long t,max;
948
949 max=p_GetOrder(p, r);
950 if (rIsSyzIndexRing(r))
951 {
952 long unsigned limit = rGetCurrSyzLimit(r);
953 while ((p=pNext(p))!=NULL)
954 {
955 if (__p_GetComp(p, r)<=limit)
956 {
957 if ((t=p_GetOrder(p, r))>max) max=t;
958 ll++;
959 }
960 else break;
961 }
962 }
963 else
964 {
965 while ((p=pNext(p))!=NULL)
966 {
967 if ((t=p_GetOrder(p, r))>max) max=t;
968 ll++;
969 }
970 }
971 *l=ll;
972 return max;
973}

◆ pLDeg1c_Totaldegree()

long pLDeg1c_Totaldegree ( poly  p,
int l,
const ring  r 
)

Definition at line 1006 of file p_polys.cc.

1007{
1008 p_CheckPolyRing(p, r);
1009 int ll=1;
1010 long t,max;
1011
1012 max=p_Totaldegree(p, r);
1013 if (rIsSyzIndexRing(r))
1014 {
1015 long unsigned limit = rGetCurrSyzLimit(r);
1016 while ((p=pNext(p))!=NULL)
1017 {
1018 if (__p_GetComp(p, r)<=limit)
1019 {
1020 if ((t=p_Totaldegree(p, r))>max) max=t;
1021 ll++;
1022 }
1023 else break;
1024 }
1025 }
1026 else
1027 {
1028 while ((p=pNext(p))!=NULL)
1029 {
1030 if ((t=p_Totaldegree(p, r))>max) max=t;
1031 ll++;
1032 }
1033 }
1034 *l=ll;
1035 return max;
1036}

◆ pLDeg1c_WFirstTotalDegree()

long pLDeg1c_WFirstTotalDegree ( poly  p,
int l,
const ring  r 
)

Definition at line 1069 of file p_polys.cc.

1070{
1071 p_CheckPolyRing(p, r);
1072 int ll=1;
1073 long t,max;
1074
1076 if (rIsSyzIndexRing(r))
1077 {
1078 long unsigned limit = rGetCurrSyzLimit(r);
1079 while ((p=pNext(p))!=NULL)
1080 {
1081 if (__p_GetComp(p, r)<=limit)
1082 {
1083 if ((t=p_Totaldegree(p, r))>max) max=t;
1084 ll++;
1085 }
1086 else break;
1087 }
1088 }
1089 else
1090 {
1091 while ((p=pNext(p))!=NULL)
1092 {
1093 if ((t=p_Totaldegree(p, r))>max) max=t;
1094 ll++;
1095 }
1096 }
1097 *l=ll;
1098 return max;
1099}

◆ pLDegb()

long pLDegb ( poly  p,
int l,
const ring  r 
)

Definition at line 812 of file p_polys.cc.

813{
814 p_CheckPolyRing(p, r);
815 long unsigned k= p_GetComp(p, r);
816 long o = r->pFDeg(p, r);
817 int ll=1;
818
819 if (k != 0)
820 {
821 while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
822 {
823 ll++;
824 }
825 }
826 else
827 {
828 while ((p=pNext(p)) !=NULL)
829 {
830 ll++;
831 }
832 }
833 *l=ll;
834 return o;
835}

◆ pModDeg()

static long pModDeg ( poly  p,
ring  r 
)
static

Definition at line 3685 of file p_polys.cc.

3686{
3687 long d=pOldFDeg(p, r);
3688 int c=__p_GetComp(p, r);
3689 if ((c>0) && ((r->pModW)->range(c-1))) d+= (*(r->pModW))[c-1];
3690 return d;
3691 //return pOldFDeg(p, r)+(*pModW)[p_GetComp(p, r)-1];
3692}

◆ pnBin()

static number * pnBin ( int  exp,
const ring  r 
)
static

Definition at line 2062 of file p_polys.cc.

2063{
2064 int e, i, h;
2065 number x, y, *bin=NULL;
2066
2067 x = n_Init(exp,r->cf);
2068 if (n_IsZero(x,r->cf))
2069 {
2070 n_Delete(&x,r->cf);
2071 return bin;
2072 }
2073 h = (exp >> 1) + 1;
2074 bin = (number *)omAlloc0(h*sizeof(number));
2075 bin[1] = x;
2076 if (exp < 4)
2077 return bin;
2078 i = exp - 1;
2079 for (e=2; e<h; e++)
2080 {
2081 x = n_Init(i,r->cf);
2082 i--;
2083 y = n_Mult(x,bin[e-1],r->cf);
2084 n_Delete(&x,r->cf);
2085 x = n_Init(e,r->cf);
2086 bin[e] = n_ExactDiv(y,x,r->cf);
2087 n_Delete(&x,r->cf);
2088 n_Delete(&y,r->cf);
2089 }
2090 return bin;
2091}

◆ pnFreeBin()

static void pnFreeBin ( number bin,
int  exp,
const coeffs  r 
)
static

Definition at line 2093 of file p_polys.cc.

2094{
2095 int e, h = (exp >> 1) + 1;
2096
2097 if (bin[1] != NULL)
2098 {
2099 for (e=1; e<h; e++)
2100 n_Delete(&(bin[e]),r);
2101 }
2102 omFreeSize((ADDRESS)bin, h*sizeof(number));
2103}

◆ pp_DivideM()

poly pp_DivideM ( poly  a,
poly  b,
const ring  r 
)

Definition at line 1637 of file p_polys.cc.

1638{
1639 if (a==NULL) { return NULL; }
1640 // TODO: better implementation without copying a,b
1641 return p_DivideM(p_Copy(a,r),p_Head(b,r),r);
1642}
poly p_DivideM(poly a, poly b, const ring r)
Definition p_polys.cc:1582

◆ pp_Jet()

poly pp_Jet ( poly  p,
int  m,
const ring  R 
)

Definition at line 4380 of file p_polys.cc.

4381{
4382 poly r=NULL;
4383 poly t=NULL;
4384
4385 while (p!=NULL)
4386 {
4387 if (p_Totaldegree(p,R)<=m)
4388 {
4389 if (r==NULL)
4390 r=p_Head(p,R);
4391 else
4392 if (t==NULL)
4393 {
4394 pNext(r)=p_Head(p,R);
4395 t=pNext(r);
4396 }
4397 else
4398 {
4399 pNext(t)=p_Head(p,R);
4400 pIter(t);
4401 }
4402 }
4403 pIter(p);
4404 }
4405 return r;
4406}

◆ pp_Jet0()

poly pp_Jet0 ( poly  p,
const ring  R 
)

Definition at line 4408 of file p_polys.cc.

4409{
4410 poly r=NULL;
4411 poly t=NULL;
4412
4413 while (p!=NULL)
4414 {
4415 if (p_LmIsConstantComp(p,R))
4416 {
4417 if (r==NULL)
4418 r=p_Head(p,R);
4419 else
4420 if (t==NULL)
4421 {
4422 pNext(r)=p_Head(p,R);
4423 t=pNext(r);
4424 }
4425 else
4426 {
4427 pNext(t)=p_Head(p,R);
4428 pIter(t);
4429 }
4430 }
4431 pIter(p);
4432 }
4433 return r;
4434}

◆ pp_JetW()

poly pp_JetW ( poly  p,
int  m,
int w,
const ring  R 
)

Definition at line 4453 of file p_polys.cc.

4454{
4455 poly r=NULL;
4456 poly t=NULL;
4457 while (p!=NULL)
4458 {
4459 if (totaldegreeWecart_IV(p,R,w)<=m)
4460 {
4461 if (r==NULL)
4462 r=p_Head(p,R);
4463 else
4464 if (t==NULL)
4465 {
4466 pNext(r)=p_Head(p,R);
4467 t=pNext(r);
4468 }
4469 else
4470 {
4471 pNext(t)=p_Head(p,R);
4472 pIter(t);
4473 }
4474 }
4475 pIter(p);
4476 }
4477 return r;
4478}

◆ pRestoreDegProcs()

void pRestoreDegProcs ( ring  r,
pFDegProc  old_FDeg,
pLDegProc  old_lDeg 
)

Definition at line 3670 of file p_polys.cc.

3671{
3672 assume(old_FDeg != NULL && old_lDeg != NULL);
3673 r->pFDeg = old_FDeg;
3674 r->pLDeg = old_lDeg;
3675}

◆ pSetDegProcs()

void pSetDegProcs ( ring  r,
pFDegProc  new_FDeg,
pLDegProc  new_lDeg 
)

Definition at line 3658 of file p_polys.cc.

3659{
3660 assume(new_FDeg != NULL);
3661 r->pFDeg = new_FDeg;
3662
3663 if (new_lDeg == NULL)
3664 new_lDeg = r->pLDegOrig;
3665
3666 r->pLDeg = new_lDeg;
3667}

Variable Documentation

◆ _components

STATIC_VAR int* _components = NULL

Definition at line 146 of file p_polys.cc.

◆ _componentsExternal

STATIC_VAR int _componentsExternal = 0

Definition at line 148 of file p_polys.cc.

◆ _componentsShifted

STATIC_VAR long* _componentsShifted = NULL

Definition at line 147 of file p_polys.cc.

◆ pOldFDeg

Definition at line 3681 of file p_polys.cc.

◆ pOldLDeg

Definition at line 3682 of file p_polys.cc.

◆ pOldLexOrder

STATIC_VAR BOOLEAN pOldLexOrder

Definition at line 3683 of file p_polys.cc.

◆ pSetm_error

VAR BOOLEAN pSetm_error =0

Definition at line 150 of file p_polys.cc.