My Project
Loading...
Searching...
No Matches
Data Structures | Macros | Functions | Variables
simpleideals.h File Reference
#include "polys/monomials/ring.h"
#include "polys/matpol.h"

Go to the source code of this file.

Data Structures

struct  const_ideal
 The following sip_sideal structure has many different uses thoughout Singular. Basic use-cases for it are: More...
 
struct  const_map
 
struct  ideal_list
 

Macros

#define IDELEMS(i)   ((i)->ncols)
 
#define id_Init(s, r, R)   idInit(s,r)
 
#define id_Elem(F, R)   idElem(F)
 
#define id_Test(A, lR)   id_DBTest(A, PDEBUG, __FILE__,__LINE__, lR, lR)
 
#define id_LmTest(A, lR)   id_DBLmTest(A, PDEBUG, __FILE__,__LINE__, lR)
 
#define id_Print(id, lR, tR)   idShow(id, lR, tR)
 

Functions

ideal idInit (int size, int rank=1)
 creates an ideal / module
 
void id_Delete (ideal *h, ring r)
 deletes an ideal/module/matrix
 
void id_Delete0 (ideal *h, ring r)
 
void id_ShallowDelete (ideal *h, ring r)
 Shallowdeletes an ideal/matrix.
 
void idSkipZeroes (ideal ide)
 gives an ideal/module the minimal possible size
 
int idSkipZeroes0 (ideal ide)
 
static int idElem (const ideal F)
 number of non-zero polys in F
 
void id_Normalize (ideal id, const ring r)
 normialize all polys in id
 
int id_MinDegW (ideal M, intvec *w, const ring r)
 
void id_DBTest (ideal h1, int level, const char *f, const int l, const ring lR, const ring tR)
 Internal verification for ideals/modules and dense matrices!
 
void id_DBLmTest (ideal h1, int level, const char *f, const int l, const ring r)
 Internal verification for ideals/modules and dense matrices!
 
ideal id_Copy (ideal h1, const ring r)
 copy an ideal
 
ideal id_SimpleAdd (ideal h1, ideal h2, const ring r)
 concat the lists h1 and h2 without zeros
 
ideal id_Add (ideal h1, ideal h2, const ring r)
 h1 + h2
 
ideal id_Power (ideal given, int exp, const ring r)
 
BOOLEAN idIs0 (ideal h)
 returns true if h is the zero ideal
 
long id_RankFreeModule (ideal m, ring lmRing, ring tailRing)
 return the maximal component number found in any polynomial in s
 
static long id_RankFreeModule (ideal m, ring r)
 
ideal id_FreeModule (int i, const ring r)
 the free module of rank i
 
int id_PosConstant (ideal id, const ring r)
 index of generator with leading term in ground ring (if any); otherwise -1
 
ideal id_Head (ideal h, const ring r)
 returns the ideals of initial terms
 
ideal id_MaxIdeal (const ring r)
 initialise the maximal ideal (at 0)
 
ideal id_MaxIdeal (int deg, const ring r)
 
ideal id_CopyFirstK (const ideal ide, const int k, const ring r)
 copies the first k (>= 1) entries of the given ideal/module and returns these as a new ideal/module (Note that the copied entries may be zero.)
 
void id_DelMultiples (ideal id, const ring r)
 ideal id = (id[i]), c any unit if id[i] = c*id[j] then id[j] is deleted for j > i
 
void id_Norm (ideal id, const ring r)
 ideal id = (id[i]), result is leadcoeff(id[i]) = 1
 
void id_DelEquals (ideal id, const ring r)
 ideal id = (id[i]) if id[i] = id[j] then id[j] is deleted for j > i
 
void id_DelLmEquals (ideal id, const ring r)
 Delete id[j], if Lm(j) == Lm(i) and both LC(j), LC(i) are units and j > i.
 
void id_DelDiv (ideal id, const ring r)
 delete id[j], if LT(j) == coeff*mon*LT(i) and vice versa, i.e., delete id[i], if LT(i) == coeff*mon*LT(j)
 
BOOLEAN id_IsConstant (ideal id, const ring r)
 test if the ideal has only constant polynomials NOTE: zero ideal/module is also constant
 
intvecid_Sort (const ideal id, const BOOLEAN nolex, const ring r)
 sorts the ideal w.r.t. the actual ringordering uses lex-ordering when nolex = FALSE
 
ideal id_Transp (ideal a, const ring rRing)
 transpose a module
 
void id_Compactify (ideal id, const ring r)
 
ideal id_Mult (ideal h1, ideal h2, const ring r)
 h1 * h2 one h_i must be an ideal (with at least one column) the other h_i may be a module (with no columns at all)
 
ideal id_Homogen (ideal h, int varnum, const ring r)
 
BOOLEAN id_HomIdeal (ideal id, ideal Q, const ring r)
 
BOOLEAN id_HomIdealW (ideal id, ideal Q, const intvec *w, const ring r)
 
BOOLEAN id_HomModuleW (ideal id, ideal Q, const intvec *w, const intvec *module_w, const ring r)
 
BOOLEAN id_HomModule (ideal m, ideal Q, intvec **w, const ring R)
 
BOOLEAN id_IsZeroDim (ideal I, const ring r)
 
ideal id_Jet (const ideal i, int d, const ring R)
 
ideal id_Jet0 (const ideal i, const ring R)
 
ideal id_JetW (const ideal i, int d, intvec *iv, const ring R)
 
ideal id_Subst (ideal id, int n, poly e, const ring r)
 
matrix id_Module2Matrix (ideal mod, const ring R)
 
matrix id_Module2formatedMatrix (ideal mod, int rows, int cols, const ring R)
 
ideal id_ResizeModule (ideal mod, int rows, int cols, const ring R)
 
ideal id_Matrix2Module (matrix mat, const ring R)
 converts mat to module, destroys mat
 
ideal id_Vec2Ideal (poly vec, const ring R)
 
int binom (int n, int r)
 
void idInitChoise (int r, int beg, int end, BOOLEAN *endch, int *choise)
 
void idGetNextChoise (int r, int end, BOOLEAN *endch, int *choise)
 
int idGetNumberOfChoise (int t, int d, int begin, int end, int *choise)
 
void idShow (const ideal id, const ring lmRing, const ring tailRing, const int debugPrint=0)
 
BOOLEAN id_InsertPolyWithTests (ideal h1, const int validEntries, const poly h2, const bool zeroOk, const bool duplicateOk, const ring r)
 insert h2 into h1 depending on the two boolean parameters:
 
intvecid_QHomWeight (ideal id, const ring r)
 
ideal id_ChineseRemainder (ideal *xx, number *q, int rl, const ring r)
 
void id_Shift (ideal M, int s, const ring r)
 
ideal id_Delete_Pos (const ideal I, const int pos, const ring r)
 
poly id_Array2Vector (poly *m, unsigned n, const ring R)
 for julia: convert an array of poly to vector
 
ideal id_PermIdeal (ideal I, int R, int C, const int *perm, const ring src, const ring dst, nMapFunc nMap, const int *par_perm, int P, BOOLEAN use_mult)
 mapping ideals/matrices to other rings
 

Variables

EXTERN_VAR omBin sip_sideal_bin
 

Data Structure Documentation

◆ sip_sideal

struct sip_sideal

The following sip_sideal structure has many different uses thoughout Singular. Basic use-cases for it are:

  • ideal/module: nrows = 1, ncols >=0 and rank:1 for ideals, rank>=0 for modules
  • matrix: nrows, ncols >=0, rank == nrows! see mp_* procedures NOTE: the m member point to memory chunk of size (ncols*nrows*sizeof(poly)) or is NULL

Definition at line 17 of file simpleideals.h.

Data Fields
poly * m
int ncols
int nrows
long rank

◆ sip_smap

struct sip_smap

Definition at line 32 of file simpleideals.h.

Data Fields
poly * m
int ncols
int nrows
char * preimage

◆ sideal_list

struct sideal_list

Definition at line 45 of file simpleideals.h.

Data Fields
ideal d
ideal_list next
int nr

Macro Definition Documentation

◆ id_Elem

#define id_Elem (   F,
  R 
)    idElem(F)

Definition at line 79 of file simpleideals.h.

◆ id_Init

#define id_Init (   s,
  r,
  R 
)    idInit(s,r)

Definition at line 58 of file simpleideals.h.

◆ id_LmTest

#define id_LmTest (   A,
  lR 
)    id_DBLmTest(A, PDEBUG, __FILE__,__LINE__, lR)

Definition at line 90 of file simpleideals.h.

◆ id_Print

#define id_Print (   id,
  lR,
  tR 
)    idShow(id, lR, tR)

Definition at line 159 of file simpleideals.h.

◆ id_Test

#define id_Test (   A,
  lR 
)    id_DBTest(A, PDEBUG, __FILE__,__LINE__, lR, lR)

Definition at line 89 of file simpleideals.h.

◆ IDELEMS

#define IDELEMS (   i)    ((i)->ncols)

Definition at line 23 of file simpleideals.h.

Function Documentation

◆ binom()

int binom ( int  n,
int  r 
)

Definition at line 1149 of file simpleideals.cc.

1150{
1151 int i;
1152 int64 result;
1153
1154 if (r==0) return 1;
1155 if (n-r<r) return binom(n,n-r);
1156 result = n-r+1;
1157 for (i=2;i<=r;i++)
1158 {
1159 result *= n-r+i;
1160 result /= i;
1161 }
1162 if (result>MAX_INT_VAL)
1163 {
1164 WarnS("overflow in binomials");
1165 result=0;
1166 }
1167 return (int)result;
1168}
long int64
Definition auxiliary.h:68
int i
Definition cfEzgcd.cc:132
#define WarnS
Definition emacs.cc:78
return result
const int MAX_INT_VAL
Definition mylimits.h:12
int binom(int n, int r)

◆ id_Add()

ideal id_Add ( ideal  h1,
ideal  h2,
const ring  r 
)

h1 + h2

Definition at line 905 of file simpleideals.cc.

906{
907 id_Test(h1, r);
908 id_Test(h2, r);
909
912 return result;
913}
ideal id_SimpleAdd(ideal h1, ideal h2, const ring R)
concat the lists h1 and h2 without zeros
void id_Compactify(ideal id, const ring r)
#define id_Test(A, lR)

◆ id_Array2Vector()

poly id_Array2Vector ( poly *  m,
unsigned  n,
const ring  R 
)

for julia: convert an array of poly to vector

Definition at line 1462 of file simpleideals.cc.

1463{
1464 poly h;
1465 int l;
1466 sBucket_pt bucket = sBucketCreate(R);
1467
1468 for(unsigned j=0;j<n ;j++)
1469 {
1470 h = m[j];
1471 if (h!=NULL)
1472 {
1473 h=p_Copy(h, R);
1474 l=pLength(h);
1475 p_SetCompP(h,j+1, R);
1476 sBucket_Merge_p(bucket, h, l);
1477 }
1478 }
1479 sBucketClearMerge(bucket, &h, &l);
1480 sBucketDestroy(&bucket);
1481 return h;
1482}
int l
Definition cfEzgcd.cc:100
int m
Definition cfEzgcd.cc:128
int j
Definition facHensel.cc:110
STATIC_VAR Poly * h
Definition janet.cc:971
#define NULL
Definition omList.c:12
static int pLength(poly a)
Definition p_polys.h:190
static void p_SetCompP(poly p, int i, ring r)
Definition p_polys.h:254
static poly p_Copy(poly p, const ring r)
returns a copy of p
Definition p_polys.h:846
void sBucketClearMerge(sBucket_pt bucket, poly *p, int *length)
Definition sbuckets.cc:237
void sBucket_Merge_p(sBucket_pt bucket, poly p, int length)
Merges p into Spoly: assumes Bpoly and p have no common monoms destroys p!
Definition sbuckets.cc:148
void sBucketDestroy(sBucket_pt *bucket)
Definition sbuckets.cc:103
sBucket_pt sBucketCreate(const ring r)
Definition sbuckets.cc:96
#define R
Definition sirandom.c:27

◆ id_ChineseRemainder()

ideal id_ChineseRemainder ( ideal xx,
number q,
int  rl,
const ring  r 
)

Definition at line 2071 of file simpleideals.cc.

2072{
2073 int cnt=0;int rw=0; int cl=0;
2074 int i,j;
2075 // find max. size of xx[.]:
2076 for(j=rl-1;j>=0;j--)
2077 {
2078 i=IDELEMS(xx[j])*xx[j]->nrows;
2079 if (i>cnt) cnt=i;
2080 if (xx[j]->nrows >rw) rw=xx[j]->nrows; // for lifting matrices
2081 if (xx[j]->ncols >cl) cl=xx[j]->ncols; // for lifting matrices
2082 }
2083 if (rw*cl !=cnt)
2084 {
2085 WerrorS("format mismatch in CRT");
2086 return NULL;
2087 }
2088 ideal result=idInit(cnt,xx[0]->rank);
2089 result->nrows=rw; // for lifting matrices
2090 result->ncols=cl; // for lifting matrices
2091 number *x=(number *)omAlloc(rl*sizeof(number));
2092 poly *p=(poly *)omAlloc(rl*sizeof(poly));
2094 EXTERN_VAR int n_SwitchChinRem; //TEST
2097 for(i=cnt-1;i>=0;i--)
2098 {
2099 for(j=rl-1;j>=0;j--)
2100 {
2101 if(i>=IDELEMS(xx[j])*xx[j]->nrows) // out of range of this ideal
2102 p[j]=NULL;
2103 else
2104 p[j]=xx[j]->m[i];
2105 }
2107 for(j=rl-1;j>=0;j--)
2108 {
2109 if(i<IDELEMS(xx[j])*xx[j]->nrows) xx[j]->m[i]=p[j];
2110 }
2111 }
2113 omFreeSize(p,rl*sizeof(poly));
2114 omFreeSize(x,rl*sizeof(number));
2115 for(i=rl-1;i>=0;i--) id_Delete(&(xx[i]),r);
2116 omFreeSize(xx,rl*sizeof(ideal));
2117 return result;
2118}
Variable x
Definition cfModGcd.cc:4090
int p
Definition cfModGcd.cc:4086
cl
Definition cfModGcd.cc:4108
int int ncols
Definition cf_linsys.cc:32
int nrows
Definition cf_linsys.cc:32
void WerrorS(const char *s)
Definition feFopen.cc:24
#define EXTERN_VAR
Definition globaldefs.h:6
poly p_ChineseRemainder(poly *xx, mpz_ptr *x, mpz_ptr *q, int rl, mpz_ptr *C, const ring R)
VAR int n_SwitchChinRem
Definition longrat.cc:3085
#define omFreeSize(addr, size)
#define omAlloc(size)
ideal idInit(int idsize, int rank)
initialise an ideal / module
void id_Delete(ideal *h, ring r)
deletes an ideal/module/matrix
#define IDELEMS(i)

◆ id_Compactify()

void id_Compactify ( ideal  id,
const ring  r 
)

Definition at line 1396 of file simpleideals.cc.

1397{
1398 int i;
1399 BOOLEAN b=FALSE;
1400
1401 i = IDELEMS(id)-1;
1402 while ((! b) && (i>=0))
1403 {
1404 b=p_IsUnit(id->m[i],r);
1405 i--;
1406 }
1407 if (b)
1408 {
1409 for(i=IDELEMS(id)-1;i>=0;i--) p_Delete(&id->m[i],r);
1410 id->m[0]=p_One(r);
1411 }
1412 else
1413 {
1414 id_DelMultiples(id,r);
1415 }
1416 idSkipZeroes(id);
1417}
int BOOLEAN
Definition auxiliary.h:87
#define FALSE
Definition auxiliary.h:96
CanonicalForm b
Definition cfModGcd.cc:4111
poly p_One(const ring r)
Definition p_polys.cc:1314
static void p_Delete(poly *p, const ring r)
Definition p_polys.h:901
static BOOLEAN p_IsUnit(const poly p, const ring r)
Definition p_polys.h:2005
void id_DelMultiples(ideal id, const ring r)
ideal id = (id[i]), c any unit if id[i] = c*id[j] then id[j] is deleted for j > i
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size

◆ id_Copy()

ideal id_Copy ( ideal  h1,
const ring  r 
)

copy an ideal

Definition at line 541 of file simpleideals.cc.

542{
543 id_Test(h1, r);
544
545 ideal h2 = idInit(IDELEMS(h1), h1->rank);
546 for (int i=IDELEMS(h1)-1; i>=0; i--)
547 h2->m[i] = p_Copy(h1->m[i],r);
548 return h2;
549}

◆ id_CopyFirstK()

ideal id_CopyFirstK ( const ideal  ide,
const int  k,
const ring  r 
)

copies the first k (>= 1) entries of the given ideal/module and returns these as a new ideal/module (Note that the copied entries may be zero.)

Definition at line 265 of file simpleideals.cc.

266{
267 id_Test(ide, r);
268
269 assume( ide != NULL );
270 assume( k <= IDELEMS(ide) );
271
272 ideal newI = idInit(k, ide->rank);
273
274 for (int i = 0; i < k; i++)
275 newI->m[i] = p_Copy(ide->m[i],r);
276
277 return newI;
278}
int k
Definition cfEzgcd.cc:99
#define assume(x)
Definition mod2.h:387

◆ id_DBLmTest()

void id_DBLmTest ( ideal  h1,
int  level,
const char f,
const int  l,
const ring  r 
)

Internal verification for ideals/modules and dense matrices!

Definition at line 604 of file simpleideals.cc.

605{
606 if (h1 != NULL)
607 {
608 // assume(IDELEMS(h1) > 0); for ideal/module, does not apply to matrix
609 omCheckAddrSize(h1,sizeof(*h1));
610
611 assume( h1->ncols >= 0 );
612 assume( h1->nrows >= 0 ); // matrix case!
613
614 assume( h1->rank >= 0 );
615
616 const long n = ((long)h1->ncols * (long)h1->nrows);
617
618 assume( !( n > 0 && h1->m == NULL) );
619
620 if( h1->m != NULL && n > 0 )
621 omdebugAddrSize(h1->m, n * sizeof(poly));
622
623 long new_rk = 0; // inlining id_RankFreeModule(h1, r, tailRing);
624
625 /* to be able to test matrices: */
626 for (long i=n - 1; i >= 0; i--)
627 {
628 if (h1->m[i]!=NULL)
629 {
630 _p_LmTest(h1->m[i], r, level);
631 const long k = p_GetComp(h1->m[i], r);
632 if (k > new_rk) new_rk = k;
633 }
634 }
635
636 // dense matrices only contain polynomials:
637 // h1->nrows == h1->rank > 1 && new_rk == 0!
638 assume( !( h1->nrows == h1->rank && h1->nrows > 1 && new_rk > 0 ) ); //
639
640 if(new_rk > h1->rank)
641 {
642 dReportError("wrong rank %d (should be %d) in %s:%d\n",
643 h1->rank, new_rk, f,l);
644 omPrintAddrInfo(stderr, h1, " for ideal");
645 h1->rank = new_rk;
646 }
647 }
648 else
649 {
650 Print("error: ideal==NULL in %s:%d\n",f,l);
651 assume( h1 != NULL );
652 }
653}
int level(const CanonicalForm &f)
FILE * f
Definition checklibs.c:9
#define Print
Definition emacs.cc:80
int dReportError(const char *fmt,...)
Definition dError.cc:44
#define p_GetComp(p, r)
Definition monomials.h:64
#define omdebugAddrSize(addr, size)
#define omCheckAddrSize(addr, size)
BOOLEAN _p_LmTest(poly p, ring r, int level)
Definition pDebug.cc:322
#define omPrintAddrInfo(A, B, C)
Definition xalloc.h:270

◆ id_DBTest()

void id_DBTest ( ideal  h1,
int  level,
const char f,
const int  l,
const ring  lR,
const ring  tR 
)

Internal verification for ideals/modules and dense matrices!

Definition at line 553 of file simpleideals.cc.

554{
555 if (h1 != NULL)
556 {
557 // assume(IDELEMS(h1) > 0); for ideal/module, does not apply to matrix
558 omCheckAddrSize(h1,sizeof(*h1));
559
560 assume( h1->ncols >= 0 );
561 assume( h1->nrows >= 0 ); // matrix case!
562
563 assume( h1->rank >= 0 );
564
565 const long n = ((long)h1->ncols * (long)h1->nrows);
566
567 assume( !( n > 0 && h1->m == NULL) );
568
569 if( h1->m != NULL && n > 0 )
570 omdebugAddrSize(h1->m, n * sizeof(poly));
571
572 long new_rk = 0; // inlining id_RankFreeModule(h1, r, tailRing);
573
574 /* to be able to test matrices: */
575 for (long i=n - 1; i >= 0; i--)
576 {
577 _pp_Test(h1->m[i], r, tailRing, level);
578 const long k = p_MaxComp(h1->m[i], r, tailRing);
579 if (k > new_rk) new_rk = k;
580 }
581
582 // dense matrices only contain polynomials:
583 // h1->nrows == h1->rank > 1 && new_rk == 0!
584 assume( !( h1->nrows == h1->rank && h1->nrows > 1 && new_rk > 0 ) ); //
585
586 if(new_rk > h1->rank)
587 {
588 dReportError("wrong rank %d (should be %d) in %s:%d\n",
589 h1->rank, new_rk, f,l);
590 omPrintAddrInfo(stderr, h1, " for ideal");
591 h1->rank = new_rk;
592 }
593 }
594 else
595 {
596 Print("error: ideal==NULL in %s:%d\n",f,l);
597 assume( h1 != NULL );
598 }
599}
static long p_MaxComp(poly p, ring lmRing, ring tailRing)
Definition p_polys.h:292
BOOLEAN _pp_Test(poly p, ring lmRing, ring tailRing, int level)
Definition pDebug.cc:332

◆ id_DelDiv()

void id_DelDiv ( ideal  id,
const ring  r 
)

delete id[j], if LT(j) == coeff*mon*LT(i) and vice versa, i.e., delete id[i], if LT(i) == coeff*mon*LT(j)

Definition at line 462 of file simpleideals.cc.

463{
464 id_Test(id, r);
465
466 int i, j;
467 int k = IDELEMS(id)-1;
468#ifdef HAVE_RINGS
469 if (rField_is_Ring(r))
470 {
471 for (i=k-1; i>=0; i--)
472 {
473 if (id->m[i] != NULL)
474 {
475 for (j=k; j>i; j--)
476 {
477 if (id->m[j]!=NULL)
478 {
479 if (p_DivisibleByRingCase(id->m[i], id->m[j],r))
480 {
481 p_Delete(&id->m[j],r);
482 }
483 else if (p_DivisibleByRingCase(id->m[j], id->m[i],r))
484 {
485 p_Delete(&id->m[i],r);
486 break;
487 }
488 }
489 }
490 }
491 }
492 }
493 else
494#endif
495 {
496 /* the case of a coefficient field: */
497 if (k>9)
498 {
499 id_DelDiv_SEV(id,k,r);
500 return;
501 }
502 for (i=k-1; i>=0; i--)
503 {
504 if (id->m[i] != NULL)
505 {
506 for (j=k; j>i; j--)
507 {
508 if (id->m[j]!=NULL)
509 {
510 if (p_LmDivisibleBy(id->m[i], id->m[j],r))
511 {
512 p_Delete(&id->m[j],r);
513 }
514 else if (p_LmDivisibleBy(id->m[j], id->m[i],r))
515 {
516 p_Delete(&id->m[i],r);
517 break;
518 }
519 }
520 }
521 }
522 }
523 }
524}
BOOLEAN p_DivisibleByRingCase(poly f, poly g, const ring r)
divisibility check over ground ring (which may contain zero divisors); TRUE iff LT(f) divides LT(g),...
Definition p_polys.cc:1646
static BOOLEAN p_LmDivisibleBy(poly a, poly b, const ring r)
Definition p_polys.h:1905
#define rField_is_Ring(R)
Definition ring.h:490
static void id_DelDiv_SEV(ideal id, int k, const ring r)
delete id[j], if LT(j) == coeff*mon*LT(i)

◆ id_DelEquals()

void id_DelEquals ( ideal  id,
const ring  r 
)

ideal id = (id[i]) if id[i] = id[j] then id[j] is deleted for j > i

Definition at line 330 of file simpleideals.cc.

331{
332 id_Test(id, r);
333
334 int i, j;
335 int k = IDELEMS(id)-1;
336 for (i=k; i>=0; i--)
337 {
338 if (id->m[i]!=NULL)
339 {
340 for (j=k; j>i; j--)
341 {
342 if ((id->m[j]!=NULL)
343 && (p_EqualPolys(id->m[i], id->m[j],r)))
344 {
345 p_Delete(&id->m[j],r);
346 }
347 }
348 }
349 }
350}
BOOLEAN p_EqualPolys(poly p1, poly p2, const ring r)
Definition p_polys.cc:4561

◆ id_Delete()

void id_Delete ( ideal h,
ring  r 
)

deletes an ideal/module/matrix

Definition at line 123 of file simpleideals.cc.

124{
125 if (*h == NULL)
126 return;
127
128 id_Test(*h, r);
129
130 const long elems = (long)(*h)->nrows * (long)(*h)->ncols;
131
132 if ( elems > 0 )
133 {
134 assume( (*h)->m != NULL );
135
136 if (r!=NULL)
137 {
138 long j = elems;
139 do
140 {
141 j--;
142 poly pp=((*h)->m[j]);
143 if (pp!=NULL) p_Delete(&pp, r);
144 }
145 while (j>0);
146 }
147
148 omFreeSize((ADDRESS)((*h)->m),sizeof(poly)*elems);
149 }
150
152 *h=NULL;
153}
CanonicalForm FACTORY_PUBLIC pp(const CanonicalForm &)
CanonicalForm pp ( const CanonicalForm & f )
Definition cf_gcd.cc:676
#define omFreeBin(addr, bin)
VAR omBin sip_sideal_bin

◆ id_Delete0()

void id_Delete0 ( ideal h,
ring  r 
)

Definition at line 155 of file simpleideals.cc.

156{
157 const long elems = IDELEMS(*h);
158
159 assume( (*h)->m != NULL );
160
161 long j = elems;
162 do
163 {
164 j--;
165 poly pp=((*h)->m[j]);
166 if (pp!=NULL) p_Delete(&pp, r);
167 }
168 while (j>0);
169
170 omFree((ADDRESS)((*h)->m));
172 *h=NULL;
173}
#define omFree(addr)

◆ id_Delete_Pos()

ideal id_Delete_Pos ( const ideal  I,
const int  pos,
const ring  r 
)

Definition at line 2134 of file simpleideals.cc.

2135{
2136 if ((p<0)||(p>=IDELEMS(I))) return NULL;
2137 ideal ret=idInit(IDELEMS(I)-1,I->rank);
2138 for(int i=0;i<p;i++) ret->m[i]=p_Copy(I->m[i],r);
2139 for(int i=p+1;i<IDELEMS(I);i++) ret->m[i-1]=p_Copy(I->m[i],r);
2140 return ret;
2141}

◆ id_DelLmEquals()

void id_DelLmEquals ( ideal  id,
const ring  r 
)

Delete id[j], if Lm(j) == Lm(i) and both LC(j), LC(i) are units and j > i.

Definition at line 353 of file simpleideals.cc.

354{
355 id_Test(id, r);
356
357 int i, j;
358 int k = IDELEMS(id)-1;
359 for (i=k; i>=0; i--)
360 {
361 if (id->m[i] != NULL)
362 {
363 for (j=k; j>i; j--)
364 {
365 if ((id->m[j] != NULL)
366 && p_LmEqual(id->m[i], id->m[j],r)
368 && n_IsUnit(pGetCoeff(id->m[i]),r->cf) && n_IsUnit(pGetCoeff(id->m[j]),r->cf)
369#endif
370 )
371 {
372 p_Delete(&id->m[j],r);
373 }
374 }
375 }
376 }
377}
static FORCE_INLINE BOOLEAN n_IsUnit(number n, const coeffs r)
TRUE iff n has a multiplicative inverse in the given coeff field/ring r.
Definition coeffs.h:519
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
Definition monomials.h:44
#define p_LmEqual(p1, p2, r)
Definition p_polys.h:1737

◆ id_DelMultiples()

void id_DelMultiples ( ideal  id,
const ring  r 
)

ideal id = (id[i]), c any unit if id[i] = c*id[j] then id[j] is deleted for j > i

Definition at line 295 of file simpleideals.cc.

296{
297 id_Test(id, r);
298
299 int i, j;
300 int k = IDELEMS(id)-1;
301 for (i=k; i>=0; i--)
302 {
303 if (id->m[i]!=NULL)
304 {
305 for (j=k; j>i; j--)
306 {
307 if (id->m[j]!=NULL)
308 {
309 if (rField_is_Ring(r))
310 {
311 /* if id[j] = c*id[i] then delete id[j].
312 In the below cases of a ground field, we
313 check whether id[i] = c*id[j] and, if so,
314 delete id[j] for historical reasons (so
315 that previous output does not change) */
316 if (p_ComparePolys(id->m[j], id->m[i],r)) p_Delete(&id->m[j],r);
317 }
318 else
319 {
320 if (p_ComparePolys(id->m[i], id->m[j],r)) p_Delete(&id->m[j],r);
321 }
322 }
323 }
324 }
325 }
326}
BOOLEAN p_ComparePolys(poly p1, poly p2, const ring r)
returns TRUE if p1 is a skalar multiple of p2 assume p1 != NULL and p2 != NULL
Definition p_polys.cc:4625

◆ id_FreeModule()

ideal id_FreeModule ( int  i,
const ring  r 
)

the free module of rank i

Definition at line 1172 of file simpleideals.cc.

1173{
1174 assume(i >= 0);
1175 if (r->isLPring)
1176 {
1177 PrintS("In order to address bimodules, the command freeAlgebra should be used.");
1178 }
1179 ideal h = idInit(i, i);
1180
1181 for (int j=0; j<i; j++)
1182 {
1183 h->m[j] = p_One(r);
1184 p_SetComp(h->m[j],j+1,r);
1185 p_SetmComp(h->m[j],r);
1186 }
1187
1188 return h;
1189}
static unsigned long p_SetComp(poly p, unsigned long c, ring r)
Definition p_polys.h:247
#define p_SetmComp
Definition p_polys.h:244
void PrintS(const char *s)
Definition reporter.cc:284

◆ id_Head()

ideal id_Head ( ideal  h,
const ring  r 
)

returns the ideals of initial terms

Definition at line 1420 of file simpleideals.cc.

1421{
1422 ideal m = idInit(IDELEMS(h),h->rank);
1423
1424 if (r->cf->has_simple_Alloc)
1425 {
1426 for (int i=IDELEMS(h)-1;i>=0; i--)
1427 if (h->m[i]!=NULL)
1428 m->m[i]=p_CopyPowerProduct0(h->m[i],pGetCoeff(h->m[i]),r);
1429 }
1430 else
1431 {
1432 for (int i=IDELEMS(h)-1;i>=0; i--)
1433 if (h->m[i]!=NULL)
1434 m->m[i]=p_Head(h->m[i],r);
1435 }
1436
1437 return m;
1438}
poly p_CopyPowerProduct0(const poly p, number n, const ring r)
like p_Head, but with coefficient n
Definition p_polys.cc:5017
static poly p_Head(const poly p, const ring r)
copy the (leading) term of p
Definition p_polys.h:860

◆ id_HomIdeal()

BOOLEAN id_HomIdeal ( ideal  id,
ideal  Q,
const ring  r 
)

Definition at line 996 of file simpleideals.cc.

997{
998 int i;
999 BOOLEAN b;
1000 i = 0;
1001 b = TRUE;
1002 while ((i < IDELEMS(id)) && b)
1003 {
1004 b = p_IsHomogeneous(id->m[i],r);
1005 i++;
1006 }
1007 if ((b) && (Q!=NULL) && (IDELEMS(Q)>0))
1008 {
1009 i=0;
1010 while ((i < IDELEMS(Q)) && b)
1011 {
1012 b = p_IsHomogeneous(Q->m[i],r);
1013 i++;
1014 }
1015 }
1016 return b;
1017}
#define TRUE
Definition auxiliary.h:100
BOOLEAN p_IsHomogeneous(poly p, const ring r)
Definition p_polys.cc:3323
#define Q
Definition sirandom.c:26

◆ id_HomIdealW()

BOOLEAN id_HomIdealW ( ideal  id,
ideal  Q,
const intvec w,
const ring  r 
)

Definition at line 1019 of file simpleideals.cc.

1020{
1021 int i;
1022 BOOLEAN b;
1023 i = 0;
1024 b = TRUE;
1025 while ((i < IDELEMS(id)) && b)
1026 {
1027 b = p_IsHomogeneousW(id->m[i],w,r);
1028 i++;
1029 }
1030 if ((b) && (Q!=NULL) && (IDELEMS(Q)>0))
1031 {
1032 i=0;
1033 while ((i < IDELEMS(Q)) && b)
1034 {
1035 b = p_IsHomogeneousW(Q->m[i],w,r);
1036 i++;
1037 }
1038 }
1039 return b;
1040}
const CanonicalForm & w
Definition facAbsFact.cc:51
BOOLEAN p_IsHomogeneousW(poly p, const intvec *w, const ring r)
Definition p_polys.cc:3347

◆ id_HomModule()

BOOLEAN id_HomModule ( ideal  m,
ideal  Q,
intvec **  w,
const ring  R 
)

Definition at line 1649 of file simpleideals.cc.

1650{
1651 if (w!=NULL) *w=NULL;
1652 if ((Q!=NULL) && (!id_HomIdeal(Q,NULL,R))) return FALSE;
1653 if (idIs0(m))
1654 {
1655 if (w!=NULL) (*w)=new intvec(m->rank);
1656 return TRUE;
1657 }
1658
1659 long cmax=1,order=0,ord,* diff,diffmin=32000;
1660 int *iscom;
1661 int i;
1662 poly p=NULL;
1663 pFDegProc d;
1664 if (R->pLexOrder && (R->order[0]==ringorder_lp))
1665 d=p_Totaldegree;
1666 else
1667 d=R->pFDeg;
1668 int length=IDELEMS(m);
1669 poly* P=m->m;
1670 poly* F=(poly*)omAlloc(length*sizeof(poly));
1671 for (i=length-1;i>=0;i--)
1672 {
1673 p=F[i]=P[i];
1675 }
1676 cmax++;
1677 diff = (long *)omAlloc0(cmax*sizeof(long));
1678 if (w!=NULL) *w=new intvec(cmax-1);
1679 iscom = (int *)omAlloc0(cmax*sizeof(int));
1680 i=0;
1681 while (i<=length)
1682 {
1683 if (i<length)
1684 {
1685 p=F[i];
1686 while ((p!=NULL) && (iscom[__p_GetComp(p,R)]==0)) pIter(p);
1687 }
1688 if ((p==NULL) && (i<length))
1689 {
1690 i++;
1691 }
1692 else
1693 {
1694 if (p==NULL) /* && (i==length) */
1695 {
1696 i=0;
1697 while ((i<length) && (F[i]==NULL)) i++;
1698 if (i>=length) break;
1699 p = F[i];
1700 }
1701 //if (pLexOrder && (currRing->order[0]==ringorder_lp))
1702 // order=pTotaldegree(p);
1703 //else
1704 // order = p->order;
1705 // order = pFDeg(p,currRing);
1706 order = d(p,R) +diff[__p_GetComp(p,R)];
1707 //order += diff[pGetComp(p)];
1708 p = F[i];
1709//Print("Actual p=F[%d]: ",i);pWrite(p);
1710 F[i] = NULL;
1711 i=0;
1712 }
1713 while (p!=NULL)
1714 {
1715 if (R->pLexOrder && (R->order[0]==ringorder_lp))
1716 ord=p_Totaldegree(p,R);
1717 else
1718 // ord = p->order;
1719 ord = R->pFDeg(p,R);
1720 if (iscom[__p_GetComp(p,R)]==0)
1721 {
1722 diff[__p_GetComp(p,R)] = order-ord;
1723 iscom[__p_GetComp(p,R)] = 1;
1724/*
1725*PrintS("new diff: ");
1726*for (j=0;j<cmax;j++) Print("%d ",diff[j]);
1727*PrintLn();
1728*PrintS("new iscom: ");
1729*for (j=0;j<cmax;j++) Print("%d ",iscom[j]);
1730*PrintLn();
1731*Print("new set %d, order %d, ord %d, diff %d\n",pGetComp(p),order,ord,diff[pGetComp(p)]);
1732*/
1733 }
1734 else
1735 {
1736/*
1737*PrintS("new diff: ");
1738*for (j=0;j<cmax;j++) Print("%d ",diff[j]);
1739*PrintLn();
1740*Print("order %d, ord %d, diff %d\n",order,ord,diff[pGetComp(p)]);
1741*/
1742 if (order != (ord+diff[__p_GetComp(p,R)]))
1743 {
1744 omFreeSize((ADDRESS) iscom,cmax*sizeof(int));
1745 omFreeSize((ADDRESS) diff,cmax*sizeof(long));
1746 omFreeSize((ADDRESS) F,length*sizeof(poly));
1747 delete *w;*w=NULL;
1748 return FALSE;
1749 }
1750 }
1751 pIter(p);
1752 }
1753 }
1754 omFreeSize((ADDRESS) iscom,cmax*sizeof(int));
1755 omFreeSize((ADDRESS) F,length*sizeof(poly));
1756 for (i=1;i<cmax;i++) (**w)[i-1]=(int)(diff[i]);
1757 for (i=1;i<cmax;i++)
1758 {
1759 if (diff[i]<diffmin) diffmin=diff[i];
1760 }
1761 if (w!=NULL)
1762 {
1763 for (i=1;i<cmax;i++)
1764 {
1765 (**w)[i-1]=(int)(diff[i]-diffmin);
1766 }
1767 }
1768 omFreeSize((ADDRESS) diff,cmax*sizeof(long));
1769 return TRUE;
1770}
static int si_max(const int a, const int b)
Definition auxiliary.h:124
static BOOLEAN length(leftv result, leftv arg)
Definition interval.cc:257
#define pIter(p)
Definition monomials.h:37
#define __p_GetComp(p, r)
Definition monomials.h:63
STATIC_VAR gmp_float * diff
#define omAlloc0(size)
static long p_Totaldegree(poly p, const ring r)
Definition p_polys.h:1521
long(* pFDegProc)(poly p, ring r)
Definition ring.h:38
@ ringorder_lp
Definition ring.h:77
BOOLEAN id_HomIdeal(ideal id, ideal Q, const ring r)
BOOLEAN idIs0(ideal h)
returns true if h is the zero ideal

◆ id_HomModuleW()

BOOLEAN id_HomModuleW ( ideal  id,
ideal  Q,
const intvec w,
const intvec module_w,
const ring  r 
)

Definition at line 1042 of file simpleideals.cc.

1043{
1044 int i;
1045 BOOLEAN b;
1046 i = 0;
1047 b = TRUE;
1048 while ((i < IDELEMS(id)) && b)
1049 {
1050 b = p_IsHomogeneousW(id->m[i],w,module_w,r);
1051 i++;
1052 }
1053 if ((b) && (Q!=NULL) && (IDELEMS(Q)>0))
1054 {
1055 i=0;
1056 while ((i < IDELEMS(Q)) && b)
1057 {
1058 b = p_IsHomogeneousW(Q->m[i],w,r);
1059 i++;
1060 }
1061 }
1062 return b;
1063}

◆ id_Homogen()

ideal id_Homogen ( ideal  h,
int  varnum,
const ring  r 
)

Definition at line 1440 of file simpleideals.cc.

1441{
1442 ideal m = idInit(IDELEMS(h),h->rank);
1443 int i;
1444
1445 for (i=IDELEMS(h)-1;i>=0; i--)
1446 {
1447 m->m[i]=p_Homogen(h->m[i],varnum,r);
1448 }
1449 return m;
1450}
poly p_Homogen(poly p, int varnum, const ring r)
Definition p_polys.cc:3274

◆ id_InsertPolyWithTests()

BOOLEAN id_InsertPolyWithTests ( ideal  h1,
const int  validEntries,
const poly  h2,
const bool  zeroOk,
const bool  duplicateOk,
const ring  r 
)

insert h2 into h1 depending on the two boolean parameters:

  • if zeroOk is true, then h2 will also be inserted when it is zero
  • if duplicateOk is true, then h2 will also be inserted when it is already present in h1 return TRUE iff h2 was indeed inserted

Definition at line 877 of file simpleideals.cc.

879{
880 id_Test(h1, r);
881 p_Test(h2, r);
882
883 if ((!zeroOk) && (h2 == NULL)) return FALSE;
884 if (!duplicateOk)
885 {
886 bool h2FoundInH1 = false;
887 int i = 0;
888 while ((i < validEntries) && (!h2FoundInH1))
889 {
890 h2FoundInH1 = p_EqualPolys(h1->m[i], h2,r);
891 i++;
892 }
893 if (h2FoundInH1) return FALSE;
894 }
895 if (validEntries == IDELEMS(h1))
896 {
897 pEnlargeSet(&(h1->m), IDELEMS(h1), 16);
898 IDELEMS(h1) += 16;
899 }
900 h1->m[validEntries] = h2;
901 return TRUE;
902}
void pEnlargeSet(poly **p, int l, int increment)
Definition p_polys.cc:3717
#define p_Test(p, r)
Definition p_polys.h:161

◆ id_IsConstant()

BOOLEAN id_IsConstant ( ideal  id,
const ring  r 
)

test if the ideal has only constant polynomials NOTE: zero ideal/module is also constant

Definition at line 528 of file simpleideals.cc.

529{
530 id_Test(id, r);
531
532 for (int k = IDELEMS(id)-1; k>=0; k--)
533 {
534 if (!p_IsConstantPoly(id->m[k],r))
535 return FALSE;
536 }
537 return TRUE;
538}
static BOOLEAN p_IsConstantPoly(const poly p, const ring r)
Definition p_polys.h:1992

◆ id_IsZeroDim()

BOOLEAN id_IsZeroDim ( ideal  I,
const ring  r 
)

Definition at line 1889 of file simpleideals.cc.

1890{
1891 BOOLEAN *UsedAxis=(BOOLEAN *)omAlloc0(rVar(r)*sizeof(BOOLEAN));
1892 int i,n;
1893 poly po;
1895 for(i=IDELEMS(I)-1;i>=0;i--)
1896 {
1897 po=I->m[i];
1898 if ((po!=NULL) &&((n=p_IsPurePower(po,r))!=0)) UsedAxis[n-1]=TRUE;
1899 }
1900 for(i=rVar(r)-1;i>=0;i--)
1901 {
1902 if(UsedAxis[i]==FALSE) {res=FALSE; break;} // not zero-dim.
1903 }
1904 omFreeSize(UsedAxis,rVar(r)*sizeof(BOOLEAN));
1905 return res;
1906}
CanonicalForm res
Definition facAbsFact.cc:60
int p_IsPurePower(const poly p, const ring r)
return i, if head depends only on var(i)
Definition p_polys.cc:1227
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition ring.h:597

◆ id_Jet()

ideal id_Jet ( const ideal  i,
int  d,
const ring  R 
)

Definition at line 1772 of file simpleideals.cc.

1773{
1774 ideal r=idInit((i->nrows)*(i->ncols),i->rank);
1775 r->nrows = i-> nrows;
1776 r->ncols = i-> ncols;
1777 //r->rank = i-> rank;
1778
1779 for(long k=((long)(i->nrows))*((long)(i->ncols))-1;k>=0; k--)
1780 r->m[k]=pp_Jet(i->m[k],d,R);
1781
1782 return r;
1783}
poly pp_Jet(poly p, int m, const ring R)
Definition p_polys.cc:4379

◆ id_Jet0()

ideal id_Jet0 ( const ideal  i,
const ring  R 
)

Definition at line 1785 of file simpleideals.cc.

1786{
1787 ideal r=idInit((i->nrows)*(i->ncols),i->rank);
1788 r->nrows = i-> nrows;
1789 r->ncols = i-> ncols;
1790 //r->rank = i-> rank;
1791
1792 for(long k=((long)(i->nrows))*((long)(i->ncols))-1;k>=0; k--)
1793 r->m[k]=pp_Jet0(i->m[k],R);
1794
1795 return r;
1796}
poly pp_Jet0(poly p, const ring R)
Definition p_polys.cc:4407

◆ id_JetW()

ideal id_JetW ( const ideal  i,
int  d,
intvec iv,
const ring  R 
)

Definition at line 1798 of file simpleideals.cc.

1799{
1800 ideal r=idInit(IDELEMS(i),i->rank);
1801 if (ecartWeights!=NULL)
1802 {
1803 WerrorS("cannot compute weighted jets now");
1804 }
1805 else
1806 {
1807 int *w=iv2array(iv,R);
1808 int k;
1809 for(k=0; k<IDELEMS(i); k++)
1810 {
1811 r->m[k]=pp_JetW(i->m[k],d,w,R);
1812 }
1813 omFreeSize((ADDRESS)w,(rVar(R)+1)*sizeof(int));
1814 }
1815 return r;
1816}
poly pp_JetW(poly p, int m, int *w, const ring R)
Definition p_polys.cc:4452
int * iv2array(intvec *iv, const ring R)
Definition weight.cc:200
EXTERN_VAR short * ecartWeights
Definition weight.h:12

◆ id_Matrix2Module()

ideal id_Matrix2Module ( matrix  mat,
const ring  R 
)

converts mat to module, destroys mat

Definition at line 1485 of file simpleideals.cc.

1486{
1487 int mc=MATCOLS(mat);
1488 int mr=MATROWS(mat);
1489 ideal result = idInit(mc,mr);
1490 int i,j,l;
1491 poly h;
1492 sBucket_pt bucket = sBucketCreate(R);
1493
1494 for(j=0;j<mc /*MATCOLS(mat)*/;j++) /* j is also index in result->m */
1495 {
1496 for (i=0;i<mr /*MATROWS(mat)*/;i++)
1497 {
1498 h = MATELEM0(mat,i,j);
1499 if (h!=NULL)
1500 {
1501 l=pLength(h);
1502 MATELEM0(mat,i,j)=NULL;
1503 p_SetCompP(h,i+1, R);
1504 sBucket_Merge_p(bucket, h, l);
1505 }
1506 }
1507 sBucketClearMerge(bucket, &(result->m[j]), &l);
1508 }
1509 sBucketDestroy(&bucket);
1510
1511 // obachman: need to clean this up
1512 id_Delete((ideal*) &mat,R);
1513 return result;
1514}
#define MATELEM0(mat, i, j)
0-based access to matrix
Definition matpol.h:31
#define MATROWS(i)
Definition matpol.h:26
#define MATCOLS(i)
Definition matpol.h:27

◆ id_MaxIdeal() [1/2]

ideal id_MaxIdeal ( const ring  r)

initialise the maximal ideal (at 0)

Definition at line 98 of file simpleideals.cc.

99{
100 int nvars;
101#ifdef HAVE_SHIFTBBA
102 if (r->isLPring)
103 {
104 nvars = r->isLPring;
105 }
106 else
107#endif
108 {
109 nvars = rVar(r);
110 }
111 ideal hh = idInit(nvars, 1);
112 for (int l=nvars-1; l>=0; l--)
113 {
114 hh->m[l] = p_One(r);
115 p_SetExp(hh->m[l],l+1,1,r);
116 p_Setm(hh->m[l],r);
117 }
118 id_Test(hh, r);
119 return hh;
120}
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent @Note: VarOffset encodes the position in p->exp
Definition p_polys.h:488
static void p_Setm(poly p, const ring r)
Definition p_polys.h:233

◆ id_MaxIdeal() [2/2]

ideal id_MaxIdeal ( int  deg,
const ring  r 
)

Definition at line 1289 of file simpleideals.cc.

1290{
1291 if (deg < 1)
1292 {
1293 ideal I=idInit(1,1);
1294 I->m[0]=p_One(r);
1295 return I;
1296 }
1297 if (deg == 1
1299 && !r->isLPring
1300#endif
1301 )
1302 {
1303 return id_MaxIdeal(r);
1304 }
1305
1306 int vars, i;
1307#ifdef HAVE_SHIFTBBA
1308 if (r->isLPring)
1309 {
1310 vars = r->isLPring - r->LPncGenCount;
1311 i = 1;
1312 // i = vars^deg
1313 for (int j = 0; j < deg; j++)
1314 {
1315 i *= vars;
1316 }
1317 }
1318 else
1319#endif
1320 {
1321 vars = rVar(r);
1322 i = binom(vars+deg-1,deg);
1323 }
1324 if (i<=0) return idInit(1,1);
1325 ideal id=idInit(i,1);
1326 idpower = id->m;
1327 idpowerpoint = 0;
1328#ifdef HAVE_SHIFTBBA
1329 if (r->isLPring)
1330 {
1331 lpmakemonoms(vars, deg, r);
1332 }
1333 else
1334#endif
1335 {
1336 makemonoms(vars,1,deg,0,r);
1337 }
1338 idpower = NULL;
1339 idpowerpoint = 0;
1340 return id;
1341}
STATIC_VAR int idpowerpoint
STATIC_VAR poly * idpower
static void makemonoms(int vars, int actvar, int deg, int monomdeg, const ring r)
ideal id_MaxIdeal(const ring r)
initialise the maximal ideal (at 0)
static void lpmakemonoms(int vars, int deg, const ring r)

◆ id_MinDegW()

int id_MinDegW ( ideal  M,
intvec w,
const ring  r 
)

Definition at line 1918 of file simpleideals.cc.

1919{
1920 int d=-1;
1921 for(int i=0;i<IDELEMS(M);i++)
1922 {
1923 if (M->m[i]!=NULL)
1924 {
1925 int d0=p_MinDeg(M->m[i],w,r);
1926 if(-1<d0&&((d0<d)||(d==-1)))
1927 d=d0;
1928 }
1929 }
1930 return d;
1931}
int p_MinDeg(poly p, intvec *w, const ring R)
Definition p_polys.cc:4497
#define M
Definition sirandom.c:25

◆ id_Module2formatedMatrix()

matrix id_Module2formatedMatrix ( ideal  mod,
int  rows,
int  cols,
const ring  R 
)

Definition at line 1565 of file simpleideals.cc.

1566{
1567 matrix result = mpNew(rows,cols);
1568 int i,cp,r=id_RankFreeModule(mod,R),c=IDELEMS(mod);
1569 poly p,h;
1570
1571 if (r>rows) r = rows;
1572 if (c>cols) c = cols;
1573 for(i=0;i<c;i++)
1574 {
1575 p=pReverse(mod->m[i]);
1576 mod->m[i]=NULL;
1577 while (p!=NULL)
1578 {
1579 h=p;
1580 pIter(p);
1581 pNext(h)=NULL;
1582 cp = p_GetComp(h,R);
1583 if (cp<=r)
1584 {
1585 p_SetComp(h,0,R);
1586 p_SetmComp(h,R);
1587 MATELEM0(result,cp-1,i) = p_Add_q(MATELEM0(result,cp-1,i),h,R);
1588 }
1589 else
1590 p_Delete(&h,R);
1591 }
1592 }
1593 id_Delete(&mod,R);
1594 return result;
1595}
CF_NO_INLINE FACTORY_PUBLIC CanonicalForm mod(const CanonicalForm &, const CanonicalForm &)
matrix mpNew(int r, int c)
create a r x c zero-matrix
Definition matpol.cc:37
#define pNext(p)
Definition monomials.h:36
static poly p_Add_q(poly p, poly q, const ring r)
Definition p_polys.h:936
static poly pReverse(poly p)
Definition p_polys.h:335
long id_RankFreeModule(ideal s, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s

◆ id_Module2Matrix()

matrix id_Module2Matrix ( ideal  mod,
const ring  R 
)

Definition at line 1519 of file simpleideals.cc.

1520{
1521 matrix result = mpNew(mod->rank,IDELEMS(mod));
1522 long i; long cp;
1523 poly p,h;
1524
1525 for(i=0;i<IDELEMS(mod);i++)
1526 {
1527 p=pReverse(mod->m[i]);
1528 mod->m[i]=NULL;
1529 while (p!=NULL)
1530 {
1531 h=p;
1532 pIter(p);
1533 pNext(h)=NULL;
1534 cp = si_max(1L,p_GetComp(h, R)); // if used for ideals too
1535 //cp = p_GetComp(h,R);
1536 p_SetComp(h,0,R);
1537 p_SetmComp(h,R);
1538#ifdef TEST
1539 if (cp>mod->rank)
1540 {
1541 Print("## inv. rank %ld -> %ld\n",mod->rank,cp);
1542 int k,l,o=mod->rank;
1543 mod->rank=cp;
1544 matrix d=mpNew(mod->rank,IDELEMS(mod));
1545 for (l=0; l<o; l++)
1546 {
1547 for (k=0; k<IDELEMS(mod); k++)
1548 {
1551 }
1552 }
1553 id_Delete((ideal *)&result,R);
1554 result=d;
1555 }
1556#endif
1557 MATELEM0(result,cp-1,i) = p_Add_q(MATELEM0(result,cp-1,i),h,R);
1558 }
1559 }
1560 // obachman 10/99: added the following line, otherwise memory leack!
1561 id_Delete(&mod,R);
1562 return result;
1563}

◆ id_Mult()

ideal id_Mult ( ideal  h1,
ideal  h2,
const ring  r 
)

h1 * h2 one h_i must be an ideal (with at least one column) the other h_i may be a module (with no columns at all)

Definition at line 918 of file simpleideals.cc.

919{
920 id_Test(h1, R);
921 id_Test(h2, R);
922
923 int j = IDELEMS(h1);
924 while ((j > 0) && (h1->m[j-1] == NULL)) j--;
925
926 int i = IDELEMS(h2);
927 while ((i > 0) && (h2->m[i-1] == NULL)) i--;
928
929 j *= i;
930 int r = si_max( h2->rank, h1->rank );
931 if (j==0)
932 {
933 if ((IDELEMS(h1)>0) && (IDELEMS(h2)>0)) j=1;
934 return idInit(j, r);
935 }
936 ideal hh = idInit(j, r);
937
938 int k = 0;
939 for (i=0; i<IDELEMS(h1); i++)
940 {
941 if (h1->m[i] != NULL)
942 {
943 for (j=0; j<IDELEMS(h2); j++)
944 {
945 if (h2->m[j] != NULL)
946 {
947 hh->m[k] = pp_Mult_qq(h1->m[i],h2->m[j],R);
948 k++;
949 }
950 }
951 }
952 }
953
955 return hh;
956}
static poly pp_Mult_qq(poly p, poly q, const ring r)
Definition p_polys.h:1160

◆ id_Norm()

void id_Norm ( ideal  id,
const ring  r 
)

ideal id = (id[i]), result is leadcoeff(id[i]) = 1

Definition at line 281 of file simpleideals.cc.

282{
283 id_Test(id, r);
284 for (int i=IDELEMS(id)-1; i>=0; i--)
285 {
286 if (id->m[i] != NULL)
287 {
288 p_Norm(id->m[i],r);
289 }
290 }
291}
void p_Norm(poly p1, const ring r)
Definition p_polys.cc:3740

◆ id_Normalize()

void id_Normalize ( ideal  id,
const ring  r 
)

normialize all polys in id

Definition at line 1908 of file simpleideals.cc.

1909{
1910 if (rField_has_simple_inverse(r)) return; /* Z/p, GF(p,n), R, long R/C */
1911 int i;
1912 for(i=I->nrows*I->ncols-1;i>=0;i--)
1913 {
1914 p_Normalize(I->m[i],r);
1915 }
1916}
void p_Normalize(poly p, const ring r)
Definition p_polys.cc:3834
static BOOLEAN rField_has_simple_inverse(const ring r)
Definition ring.h:553

◆ id_PermIdeal()

ideal id_PermIdeal ( ideal  I,
int  R,
int  C,
const int perm,
const ring  src,
const ring  dst,
nMapFunc  nMap,
const int par_perm,
int  P,
BOOLEAN  use_mult 
)

mapping ideals/matrices to other rings

Definition at line 2143 of file simpleideals.cc.

2145{
2146 ideal II=(ideal)mpNew(R,C);
2147 II->rank=I->rank;
2148 for(int i=R*C-1; i>=0; i--)
2149 {
2150 II->m[i]=p_PermPoly(I->m[i],perm,src,dst,nMap,par_perm,P,use_mult);
2151 }
2152 return II;
2153}
poly p_PermPoly(poly p, const int *perm, const ring oldRing, const ring dst, nMapFunc nMap, const int *par_perm, int OldPar, BOOLEAN use_mult)
Definition p_polys.cc:4151

◆ id_PosConstant()

int id_PosConstant ( ideal  id,
const ring  r 
)

index of generator with leading term in ground ring (if any); otherwise -1

Definition at line 80 of file simpleideals.cc.

81{
82 id_Test(id, r);
83 const int N = IDELEMS(id) - 1;
84 const poly * m = id->m + N;
85
86 for (int k = N; k >= 0; --k, --m)
87 {
88 const poly p = *m;
89 if (p!=NULL)
90 if (p_LmIsConstantComp(p, r) == TRUE)
91 return k;
92 }
93
94 return -1;
95}
const CanonicalForm CFMap CFMap & N
Definition cfEzgcd.cc:56
static BOOLEAN p_LmIsConstantComp(const poly p, const ring r)
Definition p_polys.h:1006

◆ id_Power()

ideal id_Power ( ideal  given,
int  exp,
const ring  r 
)

Definition at line 1370 of file simpleideals.cc.

1371{
1373 poly p1;
1374 int i;
1375
1376 if (idIs0(given)) return idInit(1,1);
1377 temp = id_Copy(given,r);
1379 i = binom(IDELEMS(temp)+exp-1,exp);
1380 result = idInit(i,1);
1381 result->nrows = 0;
1382//Print("ideal contains %d elements\n",i);
1383 p1=p_One(r);
1385 p_Delete(&p1,r);
1386 id_Delete(&temp,r);
1387 result->nrows = 1;
1390 return result;
1391}
gmp_float exp(const gmp_float &a)
static void id_NextPotence(ideal given, ideal result, int begin, int end, int deg, int restdeg, poly ap, const ring r)
ideal id_Copy(ideal h1, const ring r)
copy an ideal
void id_DelEquals(ideal id, const ring r)
ideal id = (id[i]) if id[i] = id[j] then id[j] is deleted for j > i

◆ id_QHomWeight()

intvec * id_QHomWeight ( ideal  id,
const ring  r 
)

Definition at line 1842 of file simpleideals.cc.

1843{
1844 poly head, tail;
1845 int k;
1846 int in=IDELEMS(id)-1, ready=0, all=0,
1847 coldim=rVar(r), rowmax=2*coldim;
1848 if (in<0) return NULL;
1849 intvec *imat=new intvec(rowmax+1,coldim,0);
1850
1851 do
1852 {
1853 head = id->m[in--];
1854 if (head!=NULL)
1855 {
1856 tail = pNext(head);
1857 while (tail!=NULL)
1858 {
1859 all++;
1860 for (k=1;k<=coldim;k++)
1861 IMATELEM(*imat,all,k) = p_GetExpDiff(head,tail,k,r);
1862 if (all==rowmax)
1863 {
1864 ivTriangIntern(imat, ready, all);
1865 if (ready==coldim)
1866 {
1867 delete imat;
1868 return NULL;
1869 }
1870 }
1871 pIter(tail);
1872 }
1873 }
1874 } while (in>=0);
1875 if (all>ready)
1876 {
1877 ivTriangIntern(imat, ready, all);
1878 if (ready==coldim)
1879 {
1880 delete imat;
1881 return NULL;
1882 }
1883 }
1884 intvec *result = ivSolveKern(imat, ready);
1885 delete imat;
1886 return result;
1887}
CanonicalForm head(const CanonicalForm &f)
void ivTriangIntern(intvec *imat, int &ready, int &all)
Definition intvec.cc:404
intvec * ivSolveKern(intvec *imat, int dimtr)
Definition intvec.cc:442
#define IMATELEM(M, I, J)
Definition intvec.h:85
static long p_GetExpDiff(poly p1, poly p2, int i, ring r)
Definition p_polys.h:635

◆ id_RankFreeModule() [1/2]

long id_RankFreeModule ( ideal  m,
ring  lmRing,
ring  tailRing 
)

return the maximal component number found in any polynomial in s

Definition at line 974 of file simpleideals.cc.

975{
976 long j = 0;
977
978 if (rRing_has_Comp(tailRing) && rRing_has_Comp(lmRing))
979 {
980 poly *p=s->m;
981 for (unsigned int l=IDELEMS(s); l > 0; --l, ++p)
982 if (*p != NULL)
983 {
984 pp_Test(*p, lmRing, tailRing);
985 const long k = p_MaxComp(*p, lmRing, tailRing);
986 if (k>j) j = k;
987 }
988 }
989
990 return j; // return -1;
991}
const CanonicalForm int s
Definition facAbsFact.cc:51
#define rRing_has_Comp(r)
Definition monomials.h:266
#define pp_Test(p, lmRing, tailRing)
Definition p_polys.h:163

◆ id_RankFreeModule() [2/2]

static long id_RankFreeModule ( ideal  m,
ring  r 
)
inlinestatic

Definition at line 108 of file simpleideals.h.

109{return id_RankFreeModule(m, r, r);}
long id_RankFreeModule(ideal m, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s

◆ id_ResizeModule()

ideal id_ResizeModule ( ideal  mod,
int  rows,
int  cols,
const ring  R 
)

Definition at line 1597 of file simpleideals.cc.

1598{
1599 // columns?
1600 if (cols!=IDELEMS(mod))
1601 {
1602 for(int i=IDELEMS(mod)-1;i>=cols;i--) p_Delete(&mod->m[i],R);
1603 pEnlargeSet(&(mod->m),IDELEMS(mod),cols-IDELEMS(mod));
1604 IDELEMS(mod)=cols;
1605 }
1606 // rows?
1607 if (rows<mod->rank)
1608 {
1609 for(int i=IDELEMS(mod)-1;i>=0;i--)
1610 {
1611 if (mod->m[i]!=NULL)
1612 {
1613 while((mod->m[i]!=NULL) && (p_GetComp(mod->m[i],R)>rows))
1614 mod->m[i]=p_LmDeleteAndNext(mod->m[i],R);
1615 poly p=mod->m[i];
1616 while(pNext(p)!=NULL)
1617 {
1618 if (p_GetComp(pNext(p),R)>rows)
1620 else
1621 pIter(p);
1622 }
1623 }
1624 }
1625 }
1626 mod->rank=rows;
1627 return mod;
1628}
static poly p_LmDeleteAndNext(poly p, const ring r)
Definition p_polys.h:755

◆ id_ShallowDelete()

void id_ShallowDelete ( ideal h,
ring  r 
)

Shallowdeletes an ideal/matrix.

Definition at line 177 of file simpleideals.cc.

178{
179 id_Test(*h, r);
180
181 if (*h == NULL)
182 return;
183
184 int j,elems;
185 elems=j=(*h)->nrows*(*h)->ncols;
186 if (j>0)
187 {
188 assume( (*h)->m != NULL );
189 do
190 {
191 p_ShallowDelete(&((*h)->m[--j]), r);
192 }
193 while (j>0);
194 omFreeSize((ADDRESS)((*h)->m),sizeof(poly)*elems);
195 }
197 *h=NULL;
198}
void p_ShallowDelete(poly *p, const ring r)

◆ id_Shift()

void id_Shift ( ideal  M,
int  s,
const ring  r 
)

Definition at line 2120 of file simpleideals.cc.

2121{
2122// id_Test( M, r );
2123
2124// assume( s >= 0 ); // negative is also possible // TODO: verify input ideal in such a case!?
2125
2126 for(int i=IDELEMS(M)-1; i>=0;i--)
2127 p_Shift(&(M->m[i]),s,r);
2128
2129 M->rank += s;
2130
2131// id_Test( M, r );
2132}
void p_Shift(poly *p, int i, const ring r)
shifts components of the vector p by i
Definition p_polys.cc:4755

◆ id_SimpleAdd()

ideal id_SimpleAdd ( ideal  h1,
ideal  h2,
const ring  r 
)

concat the lists h1 and h2 without zeros

Definition at line 789 of file simpleideals.cc.

790{
791 id_Test(h1, R);
792 id_Test(h2, R);
793
794 if ( idIs0(h1) )
795 {
797 if (res->rank<h1->rank) res->rank=h1->rank;
798 return res;
799 }
800 if ( idIs0(h2) )
801 {
803 if (res->rank<h2->rank) res->rank=h2->rank;
804 return res;
805 }
806
807 int j = IDELEMS(h1)-1;
808 while ((j >= 0) && (h1->m[j] == NULL)) j--;
809
810 int i = IDELEMS(h2)-1;
811 while ((i >= 0) && (h2->m[i] == NULL)) i--;
812
813 const int r = si_max(h1->rank, h2->rank);
814
815 ideal result = idInit(i+j+2,r);
816
817 int l;
818
819 for (l=j; l>=0; l--)
820 result->m[l] = p_Copy(h1->m[l],R);
821
822 j = i+j+1;
823 for (l=i; l>=0; l--, j--)
824 result->m[j] = p_Copy(h2->m[l],R);
825
826 return result;
827}

◆ id_Sort()

intvec * id_Sort ( const ideal  id,
const BOOLEAN  nolex,
const ring  r 
)

sorts the ideal w.r.t. the actual ringordering uses lex-ordering when nolex = FALSE

Definition at line 694 of file simpleideals.cc.

695{
696 id_Test(id, r);
697
698 intvec * result = new intvec(IDELEMS(id));
699 int i, j, actpos=0, newpos;
702
703 for (i=0;i<IDELEMS(id);i++)
704 {
705 if (id->m[i]!=NULL)
706 {
707 notFound = TRUE;
708 newpos = actpos / 2;
709 diff = (actpos+1) / 2;
710 diff = (diff+1) / 2;
711 lastcomp = p_Comp_RevLex(id->m[i],id->m[(*result)[newpos]],nolex,r);
712 if (lastcomp<0)
713 {
714 newpos -= diff;
715 }
716 else if (lastcomp>0)
717 {
718 newpos += diff;
719 }
720 else
721 {
722 notFound = FALSE;
723 }
724 //while ((newpos>=0) && (newpos<actpos) && (notFound))
725 while (notFound && (newpos>=0) && (newpos<actpos))
726 {
727 newcomp = p_Comp_RevLex(id->m[i],id->m[(*result)[newpos]],nolex,r);
728 olddiff = diff;
729 if (diff>1)
730 {
731 diff = (diff+1) / 2;
732 if ((newcomp==1)
733 && (actpos-newpos>1)
734 && (diff>1)
735 && (newpos+diff>=actpos))
736 {
737 diff = actpos-newpos-1;
738 }
739 else if ((newcomp==-1)
740 && (diff>1)
741 && (newpos<diff))
742 {
743 diff = newpos;
744 }
745 }
746 if (newcomp<0)
747 {
748 if ((olddiff==1) && (lastcomp>0))
749 notFound = FALSE;
750 else
751 newpos -= diff;
752 }
753 else if (newcomp>0)
754 {
755 if ((olddiff==1) && (lastcomp<0))
756 {
757 notFound = FALSE;
758 newpos++;
759 }
760 else
761 {
762 newpos += diff;
763 }
764 }
765 else
766 {
767 notFound = FALSE;
768 }
770 if (diff==0) notFound=FALSE; /*hs*/
771 }
772 if (newpos<0) newpos = 0;
773 if (newpos>actpos) newpos = actpos;
774 while ((newpos<actpos) && (p_Comp_RevLex(id->m[i],id->m[(*result)[newpos]],nolex,r)==0))
775 newpos++;
776 for (j=actpos;j>newpos;j--)
777 {
778 (*result)[j] = (*result)[j-1];
779 }
780 (*result)[newpos] = i;
781 actpos++;
782 }
783 }
784 for (j=0;j<actpos;j++) (*result)[j]++;
785 return result;
786}
static int p_Comp_RevLex(poly a, poly b, BOOLEAN nolex, const ring R)
for idSort: compare a and b revlex inclusive module comp.

◆ id_Subst()

ideal id_Subst ( ideal  id,
int  n,
poly  e,
const ring  r 
)

Definition at line 1634 of file simpleideals.cc.

1635{
1636 int k=MATROWS((matrix)id)*MATCOLS((matrix)id);
1638
1639 res->rank = id->rank;
1640 for(k--;k>=0;k--)
1641 {
1642 res->m[k]=p_Subst(id->m[k],n,e,r);
1643 id->m[k]=NULL;
1644 }
1645 id_Delete(&id,r);
1646 return res;
1647}
poly * m
Definition matpol.h:18
poly p_Subst(poly p, int n, poly e, const ring r)
Definition p_polys.cc:3979

◆ id_Transp()

ideal id_Transp ( ideal  a,
const ring  rRing 
)

transpose a module

Definition at line 1938 of file simpleideals.cc.

1939{
1940 int r = a->rank, c = IDELEMS(a);
1941 ideal b = idInit(r,c);
1942
1943 int i;
1944 for (i=c; i>0; i--)
1945 {
1946 poly p=a->m[i-1];
1947 while(p!=NULL)
1948 {
1949 poly h=p_Head(p, rRing);
1950 int co=__p_GetComp(h, rRing)-1;
1951 p_SetComp(h, i, rRing);
1952 p_Setm(h, rRing);
1953 h->next=b->m[co];
1954 b->m[co]=h;
1955 pIter(p);
1956 }
1957 }
1958 for (i=IDELEMS(b)-1; i>=0; i--)
1959 {
1960 poly p=b->m[i];
1961 if(p!=NULL)
1962 {
1963 b->m[i]=p_SortMerge(p,rRing,TRUE);
1964 }
1965 }
1966 return b;
1967}
static poly p_SortMerge(poly p, const ring r, BOOLEAN revert=FALSE)
Definition p_polys.h:1243

◆ id_Vec2Ideal()

ideal id_Vec2Ideal ( poly  vec,
const ring  R 
)

Definition at line 1453 of file simpleideals.cc.

1454{
1455 ideal result=idInit(1,1);
1457 p_Vec2Polys(vec, &(result->m), &(IDELEMS(result)),R);
1458 return result;
1459}
fq_nmod_poly_t * vec
Definition facHensel.cc:108
#define omFreeBinAddr(addr)
void p_Vec2Polys(poly v, poly **p, int *len, const ring r)
Definition p_polys.cc:3646

◆ idElem()

int idElem ( const ideal  F)
inlinestatic

number of non-zero polys in F

Definition at line 69 of file simpleideals.h.

70{
71 int i=0;
72 for(int j=IDELEMS(F)-1;j>=0;j--)
73 {
74 if ((F->m)[j]!=NULL) i++;
75 }
76 return i;
77}

◆ idGetNextChoise()

void idGetNextChoise ( int  r,
int  end,
BOOLEAN endch,
int choise 
)

Definition at line 1091 of file simpleideals.cc.

1092{
1093 int i = r-1,j;
1094 while ((i >= 0) && (choise[i] == end))
1095 {
1096 i--;
1097 end--;
1098 }
1099 if (i == -1)
1100 *endch = TRUE;
1101 else
1102 {
1103 choise[i]++;
1104 for (j=i+1; j<r; j++)
1105 {
1106 choise[j] = choise[i]+j-i;
1107 }
1108 *endch = FALSE;
1109 }
1110}

◆ idGetNumberOfChoise()

int idGetNumberOfChoise ( int  t,
int  d,
int  begin,
int  end,
int choise 
)

Definition at line 1117 of file simpleideals.cc.

1118{
1119 int * localchoise,i,result=0;
1120 BOOLEAN b=FALSE;
1121
1122 if (d<=1) return 1;
1123 localchoise=(int*)omAlloc((d-1)*sizeof(int));
1124 idInitChoise(d-1,begin,end,&b,localchoise);
1125 while (!b)
1126 {
1127 result++;
1128 i = 0;
1129 while ((i<t) && (localchoise[i]==choise[i])) i++;
1130 if (i>=t)
1131 {
1132 i = t+1;
1133 while ((i<d) && (localchoise[i-1]==choise[i])) i++;
1134 if (i>=d)
1135 {
1136 omFreeSize((ADDRESS)localchoise,(d-1)*sizeof(int));
1137 return result;
1138 }
1139 }
1140 idGetNextChoise(d-1,end,&b,localchoise);
1141 }
1142 omFreeSize((ADDRESS)localchoise,(d-1)*sizeof(int));
1143 return 0;
1144}
void idGetNextChoise(int r, int end, BOOLEAN *endch, int *choise)
void idInitChoise(int r, int beg, int end, BOOLEAN *endch, int *choise)

◆ idInit()

ideal idInit ( int  idsize,
int  rank 
)

creates an ideal / module

creates an ideal / module

Definition at line 35 of file simpleideals.cc.

36{
37 assume( idsize >= 0 && rank >= 0 );
38
40
41 IDELEMS(hh) = idsize; // ncols
42 hh->nrows = 1; // ideal/module!
43
44 hh->rank = rank; // ideal: 1, module: >= 0!
45
46 if (idsize>0)
47 hh->m = (poly *)omAlloc0(idsize*sizeof(poly));
48 else
49 hh->m = NULL;
50
51 return hh;
52}
#define omAllocBin(bin)

◆ idInitChoise()

void idInitChoise ( int  r,
int  beg,
int  end,
BOOLEAN endch,
int choise 
)

Definition at line 1069 of file simpleideals.cc.

1070{
1071 /*returns the first choise of r numbers between beg and end*/
1072 int i;
1073 for (i=0; i<r; i++)
1074 {
1075 choise[i] = 0;
1076 }
1077 if (r <= end-beg+1)
1078 for (i=0; i<r; i++)
1079 {
1080 choise[i] = beg+i;
1081 }
1082 if (r > end-beg+1)
1083 *endch = TRUE;
1084 else
1085 *endch = FALSE;
1086}

◆ idIs0()

BOOLEAN idIs0 ( ideal  h)

returns true if h is the zero ideal

Definition at line 959 of file simpleideals.cc.

960{
961 assume (h != NULL); // will fail :(
962// if (h == NULL) return TRUE;
963
964 if (h->m!=NULL)
965 {
966 for( int i = IDELEMS(h)-1; i >= 0; i-- )
967 if(h->m[i] != NULL)
968 return FALSE;
969 }
970 return TRUE;
971}

◆ idShow()

void idShow ( const ideal  id,
const ring  lmRing,
const ring  tailRing,
const int  debugPrint = 0 
)

Definition at line 57 of file simpleideals.cc.

58{
59 assume( debugPrint >= 0 );
60
61 if( id == NULL )
62 PrintS("(NULL)");
63 else
64 {
65 Print("Module of rank %ld,real rank %ld and %d generators.\n",
66 id->rank,id_RankFreeModule(id, lmRing, tailRing),IDELEMS(id));
67
68 int j = (id->ncols*id->nrows) - 1;
69 while ((j > 0) && (id->m[j]==NULL)) j--;
70 for (int i = 0; i <= j; i++)
71 {
72 Print("generator %d: ",i); p_wrp(id->m[i], lmRing, tailRing);PrintLn();
73 }
74 }
75}
void p_wrp(poly p, ring lmRing, ring tailRing)
Definition polys0.cc:373
void PrintLn()
Definition reporter.cc:310

◆ idSkipZeroes()

void idSkipZeroes ( ideal  ide)

gives an ideal/module the minimal possible size

Definition at line 201 of file simpleideals.cc.

202{
203 assume (ide != NULL);
204
205 int k;
206 int j = -1;
207 int idelems=IDELEMS(ide);
209
210 for (k=0; k<idelems; k++)
211 {
212 if (ide->m[k] != NULL)
213 {
214 j++;
215 if (change)
216 {
217 ide->m[j] = ide->m[k];
218 ide->m[k] = NULL;
219 }
220 }
221 else
222 {
223 change=TRUE;
224 }
225 }
226 if (change)
227 {
228 if (j == -1)
229 j = 0;
230 j++;
231 pEnlargeSet(&(ide->m),idelems,j-idelems);
232 IDELEMS(ide) = j;
233 }
234}

◆ idSkipZeroes0()

int idSkipZeroes0 ( ideal  ide)

Definition at line 236 of file simpleideals.cc.

237{
238 assume (ide != NULL);
239
240 int k;
241 int j = -1;
242 int idelems=IDELEMS(ide);
243
244 k=0;
245 while((k<idelems)&&(ide->m[k] != NULL)) k++;
246 if (k==idelems) return idelems;
247 // now: k: pos of first NULL entry
248 j=k; k=k+1;
249 for (; k<idelems; k++)
250 {
251 if (ide->m[k] != NULL)
252 {
253 ide->m[j] = ide->m[k];
254 ide->m[k] = NULL;
255 j++;
256 }
257 }
258 if (j<=1) return 1;
259 return j;
260}

Variable Documentation

◆ sip_sideal_bin

EXTERN_VAR omBin sip_sideal_bin

Definition at line 54 of file simpleideals.h.