NUT USB setup in modern Solaris-like systems
(OpenSolaris descendants)



NUT USB setup in modern Solaris-like systems (OpenSolaris descendants)

REVISION HISTORY

NUMBER

DATE

DESCRIPTION

NAME

2.8.1

2023-10-31

Some changes to API, docs and recipes, in
particular to simplify local builds and tests (e.g. to
help end-users check if current NUT codebase
trunk has already fixed an issue they see with a
packaged installation). Revived NUT for
Windows effort, further improved other OS
integrations. NUT became reference for "UPS
management protocol", Informational RFC 9271.
Documentation files refactored to ease
maintenance. More drivers and new driver
categories introduced.

JK

2.8.0

2022-04-26

Change of maintainer. Many changes to API,
docs (both style and content), and recipes, with a
stress on non-regression test-ability, run-time
debug-ability, general codebase maintainability,
as well as OS integrations (notably
nut-driver-enumerator for systemd and SMF
service instance maintenance). Added a lot in
area of Cl support and documented pre-requisite
package lists for numerous platforms, and Cl
agent set-up. Added libusb-1.x support and
many new driver categories (and drivers), and
daisychain device connection support. Instant
commands enhanced with TRACKING to enable
protocol-based waiting for completion of a
particular INSTCMD or SET operation.

JK

2.7.4

2016-03-09

NUT variables namespace updated, in particular
for outlet groups, alarms and thresholds, ATS
devices, and battery.charger.status to supersede
CHRG and DISCHRG flags published in
ups.status readings. NUT network protocol
extended with NUMBER type; some API
changes.

AQ

2.7.3

2015-04-22

Documentation revised, including some API
changes. Added NUT DDL links. NUT variables
namespace updated.

AQ

2.7.2

2014-04-17

The nut-website project was offloaded into a
separate repository. FreeDesktop HAL support
was removed (obsoleted in GNOME consumer).
Introduced nutdrv_atcl_usb driver.

AQ




NUT USB setup in modern Solaris-like systems (OpenSolaris descendants)

REVISION HISTORY

NUMBER

DATE

DESCRIPTION

NAME

2.71

2013-11-19

NUT source codebase migrated from SVN to Git

(and from Debian infrastructure to GitHub source

code hosting). jNut binding split into a separate
project. Introduced libnutclient (C++ binding),
al175, apcupsd-ups and nutdrv_qgx drivers,
Mozilla NSS support for simpler licensing than
OpenSSL, and a newer apcsmart
implementation. Documentation support
enhanced with a spell checker, contents
massively updated to reflect project changes.

CL

2.6.5

2012-08-08

New macosx-ups driver, new implementation of
mge-shut driver. NUT variables namespace
updated. Docs cleaned up and revised.

AQ

2.6.4

2012-05-31

New NUT network protocol commands (LIST
CLIENTS, LIST RANGE and NETVER), and
socket protocol commands (ADDRANGE,
DELRANGE). NUT variables namespace
updated. Introduced nut-recorder tool.

AQ

2.6.3

2012-01-04

No substantial changes to documentation.

AQ

2.6.2

2011-09-15

Introduced nut-scanner tool and nut-ipmipsu
driver, systemd support, and a new apcsmart
implementation.

AQ

2.6.1

2011-06-01

Introduced default.* and override.* optional

settings in ups.conf, an ups.efficiency report, and

outlet.0 special handling.

AQ

2.6.0

2011-01-14

First release of AsciiDoc documentation for
Network UPS Tools (NUT).

AQ




NUT USB setup in modern Solaris-like systems (OpenSolaris descendants) iv

Contents

1 Change the OS driver binding: use UGEN 1

2 libusb version and binary 3

3 Troubleshooting and reconnecting 4
3.1 Recyclethe USB connection . . . . . . . . . . i ittt e 5
3.2 Regular auto-recovery viacrontab . . . . . . . L. oL Lo e e e e e e e e e e 6




NUT USB setup in modern Solaris-like systems (OpenSolaris descendants) 1/6

Local-media device setup for use with NUT has some nuances with numerous descendants of the OpenSolaris project, including
both the commercial Sun/Oracle Solaris 11 and illumos-based open source distributions such as Openlndiana and OmniOS.
Recommendations below may also apply to other related operating systems, possibly to older releases as well.

1 Change the OS driver binding: use UGEN

Like other hardware, USB devices are interfaced to the operating system by OS drivers, and often there are several suitable
drivers with different capabilities. In Solaris and related systems, this mapping is detailed in the /etc/driver_aliases file
and properly managed by dedicated tools. By default, USB devices can be captured by the generic USB HID driver, or none at
all; however an "UGEN" driver can behave better with the libusb library used on Solaris.

Note
Operations below would need running as root or elevating the privileges (via pfexec, sudo, etc.)

Connect the power device using its USB port to your computer.

Run prtconf -v | less to see the details of device connections, and search for its probable strings (vendor, model, serial
number).

Two examples follow:

* In this example, no suitable driver was attached "out of the box":

:; prtconf -v

input (driver not attached)
Hardware properties:
name='driver-minor' type=int items=1
value=00000000
name='driver-major' type=int items=1
value=00000002
name="'low-speed' type=boolean
name="usb-product-name' type=string items=1
value='Eaton 9PX'
name='usb-vendor-name' type=string items=1
value='EATON'
name='usb-serialno' type=string items=1
value='G202E02032"'
name='"usb-raw-cfg-descriptors' type=byte items=34
value=09.02.22.00.01.01.00.a0.0a <
.09.04.00.00.01.03.00.00.00.09.21.10.01.21.01.22.10.0d <«
.07.05.81.03.08.00.14
name="'usb-dev-descriptor' type=byte items=18
value=12.01.10.01.00.00.00.08.63.04.f£f.££.00.01.01.02.04.01
name='usb-release' type=int items=1
value=00000110
name='usb-num-configs' type=int items=1
value=00000001
name='usb-revision-id' type=int items=1
value=00000100
name='"usb-product-id' type=int items=1
value=0000£f£fff
name='usb-vendor-id' type=int items=1
value=00000463
name="'compatible' type=string items=9
value='usb463,ffff.100' + 'usb463,ffff' + 'usbif463,class3.0.0' + 'usbifd63, <+
class3.0' + 'usbif463,class3' + 'usbif,class3.0.0' + 'usbif,class3.0' + ' <
usbif,class3' + 'usb,device'




NUT USB setup in modern Solaris-like systems (OpenSolaris descendants) 2/6

name='reg' type=int items=1
value=00000002

name='"assigned-address' type=int items=1
value=00000003

* In the following example, a "hid power" driver was attached, giving some usability to the device although not enough for
NUT to interact well (at least, according to the helpful notes in the https://web.archive.org/web/20140126045707/http://-
barbz.com.au/blog/?7p=407 blog entry):

:; prtconf -v

input, instance #1
Driver properties:
name="'pm-components' type=string items=3 dev=none
value="'NAME= hidl Power' + '0=USB D3 State' + '3=USB DO State'
Hardware properties:
name='driver-minor' type=int items=1
value=00000000
name='driver-major' type=int items=1
value=00000002
name="'low-speed' type=boolean
name='"usb-product-name' type=string items=1
value='USB to Serial'
name="'usb-vendor-name' type=string items=1
value="INNO TECH'
name='usb-serialno' type=string items=1
value='20100826"
name='"'usb-raw-cfg-descriptors' type=byte items=34
value <>
=09.02.22.00.01.01.03.80.32.09.04.00.00.01.03.00.00.04.09.21.00.01.00.01.22.1 ¢«
.00.07.05.81.03.08.00.20
name='usb-dev-descriptor' type=byte items=18
value=12.01.10.01.00.00.00.08.65.06.61.51.02.00.01.02.03.01
name='usb-release' type=int items=1
value=00000110
name="'usb-num-configs' type=int items=1
value=00000001
name='usb-revision-id' type=int items=1
value=00000002
name='"usb-product-id' type=int items=1
value=00005161
name="'usb-vendor-id' type=int items=1
value=00000665
name='compatible' type=string items=9
value='usb665,5161.2"' + 'usb665,5161"' + 'usbif665,class3.0.0"' + 'usbif665, <
class3.0' + 'usbif665,class3' + 'usbif,class3.0.0' + 'usbif,class3.0' + ' <
usbif,class3' + 'usb,device'
name='reg' type=int items=1
value=00000003
name='assigned-address' type=int items=1
value=00000005
Device Minor Nodes:
dev=(108,2)
dev_path=/pci@0, 0/pci8086,7270Q1d/hubRl/input@3:hid_0_1
spectype=chr type=minor
dev_1link=/dev/usb/hid0

You can also check with cfgadm if the device is at least somehow visible (if not, there can be hardware issues in play). For
example, if there is a physical link but no recognized driver was attached, the device would show up as "unconfigured":

:; cfgadm | grep usb-



https://web.archive.org/web/20140126045707/http://barbz.com.au/blog/?p=407
https://web.archive.org/web/20140126045707/http://barbz.com.au/blog/?p=407

NUT USB setup in modern Solaris-like systems (OpenSolaris descendants) 3/6

usb8/1 usb-input connected unconfigured ok

If you conclude that a change is needed, you would need to unload the existing copy of the "ugen" driver and set it up to handle
the device patterns that you find in compatible values from prtconf. For example, to monitor the devices from listings above,
you would run:

:; rem_drv ugen
:; add_drv —-i '""usb463,ffff.100"' -m 'x 0666 root sys' ugen

or

:; rem_drv ugen
:; add_drv -1 '""usb665,5161.2"' -m 'x 0666 root sys' ugen

Note that there are many patterns in the compatible line which allow for narrower or wider catchment. It is recommended to
match with the narrowest fit, to avoid potential conflict with other devices from same vendor (especially if the declared identifiers
are for a generic USB chipset).

Also note that the add_drv definition above lists the POSIX access metadata for the device node files that would be generated
when the device is plugged in and detected. In the examples above, it would be owned by root : sys but accessible for reads
and writes (0666) to anyone on the system. On shared systems you may want to constrain this access to the account that the
NUT driver would run as.

After proper driver binding, c fgadm should expose the details:

# cfgadm -1v

usb8/1 connected configured ok

Mfg: EATON Product: Eaton 9PX NConfigs: 1 Config: 0 <no cfg str descr>
unavailable wusb-input n /devices/pci@0,0/pcil03¢c,1309@1d,2:1

Usually the driver mapping should set up the "friendly" device nodes under /dev/ tree as well (symlinks to real entries
in /devices/) so for NUT drivers you would specify a port=/dev/usb/463.f££f£f/0 for your new driver section in
ups.conf.

Note

As detailed in config-notes.ixt, the "natively USB" drivers (including usbhid-ups and nutdrv_gx) match the device by ID
and/or strings it reports, and so effectively require but ignore the port option—so it is commonly configured as port=auto.
Drivers used for SHUT or serial protocols do need the device path.

For some serial-to-USB converter chips however it was noted that while the device driver is attached, and the /device/. ..
path is exposed in the dme sg output (saved to /var/adm/messages) the /dev/ ... symlinks are not created. In this case
you can pass the low-level name of the character-device node as the "port" option, e.g.:

./mge-shut -s 9px-ser -DDDDD -d2 -u root \
-x port=/devices/pci@0,0/pcil03c,1309@1la,2/device@1:0

2 libusb version and binary

Until NUT release 2.7.4 the only option to build NUT drivers for USB connectivity was to use libusb-0.1 or a distribution’s
variant of it; the original Sun Solaris releases and later related systems provided their customized version for example (packaged
originally as SUNW1ibusbugen, SUNWugen{, u} and SUNWusb{, s, u, vc}).

However, libusb-0.1 consuming programs had some stability issues reported when running with long-term connections to devices
(such as an UPS), especially when using USB hubs and chips where hardware vendors had cut a few corners too many, which
were addressed in a newer rewrite of the library as libusb-1.0.



config-notes.txt

NUT USB setup in modern Solaris-like systems (OpenSolaris descendants) 4/6

Subsequently just as at least the illumos-based distributions evolved to include the new library and certain patches for it, and the
library itself matured, the NUT project also added an ability to build with libusb-1.0 either directly or using its 0.1-compat API
(available since NUT 2.8.0 release).

If your "standard" build of NUT has problems connecting to your USB UPS (libusb binary variant should be visible in driver
debug messages), consider re-building NUT from source with the other option using the recent library build as available for your
distribution.

In this context, note the Openlndiana libusb-1 package pull requests with code which was successfully used when developing

this documentation:

* https://github.com/Openlndiana/oi-userland/pull/5382
¢ (TO CHECK) https://github.com/OpenIndiana/oi-userland/pull/5277

Binaries from builds made in Openlndiana using the recipe from PR #5382 above were successfully directly used on contempo-
rary OmniOS CE as well.

3 Troubleshooting and reconnecting

So... your setup worked nicely, and then one day you see the console flooded with messages like the following:

Broadcast Message from nut (??7?) on n541 Mon May 9 12:05:59...
Communications with UPS innotech@localhost lost

Broadcast Message from nut (???) on n541 Mon May 9 12:10:55...
UPS innotech@localhost is unavailable

Unfortunately, some devices "get stuck” on USB level (whether in the chips, in the OS driver layer, libusb or NUT driver)
and their NUT drivers have to be restarted to regain monitoring, as opposed to intermittent losses of connectivity that software
recovers from automatically.

As in all systems, you should stop all programs using the connection, including NUT driver instances that might have been started
beside the wrapping service (SMF). It may be possible to just start the new driver instance at this point, but if it still does not see
the device — you have to re-initialize the connection on the OS level.

As a symptom, attempts to start the NUT driver with elevated debug verbosity would not even see the device details:

0.000606 [D1] Saving PID 5187 into /var/run/nut/nutdrv_gx-innotech.pid
0.000727 [D1] upsdrv_initups...
0.012065 [D2] Checking device 1 of 2 (0665/5161)
0.012303 [D1] Failed to open device (0665/5161), skipping: Other error
0.012394 [D2] Checking device 2 of 2 (099A/610A)
0.020364 [D2] Trying to match device
0.020586 [D3] match_function_regex: matching a device...
0.020839 [D2] match_function_regex: failed match of VendorID: 99%a
0.021061 [D2] Device does not match - skipping

]

0.021371 [D2] libusbl: No appropriate HID device found
Network UPS Tools - Generic Q% USB/Serial driver 0.32 (2.8.0-20-g535395363)
USB communication driver (libusb 1.0) 0.43

0.021720 libusbl: Could not open any HID devices: insufficient permissions on <+
everything

0.021821 No supported devices found. Please check your device availability with ' ¢
lsusb'

and make sure you have an up-to-date version of NUT. If this does not help,

try running the driver with at least 'subdriver', 'vendorid' and 'productid'
options specified. Please refer to the man page for details about these options
(man 8 nutdrv_gx) .



https://github.com/OpenIndiana/oi-userland/pull/5382
https://github.com/OpenIndiana/oi-userland/pull/5277
https://github.com/OpenIndiana/oi-userland/pull/5382

NUT USB setup in modern Solaris-like systems (OpenSolaris descendants) 5/6

Driver failed to start (exit status=1)
Network UPS Tools — UPS driver controller 2.8.0-20-g535395363
[ May 9 03:10:01 Method "start" exited with status 1. ]

Note

Details of the service instance life-cycle for the NUT driver may be seen in its SMF log, e.g. by less
/var/svc/log/*innotech*1og, and to see in-vivo debugs as the service starts in production mode, use debug_min
= 3inthe /etc/nut/ups.conf file (in global context or in driver section).

3.1 Recycle the USB connection

In case of Solaris/illumos systems, first stop the respective nut-driver instance, e.g.:

:; svcadm disable -ts nut-driver:innotech

:; ps —ef | grep -Ei 'nut|ups' ; svcs —-p innotech
root 10522 1 0 May 06 ? 0:00 /usr/sbin/upsmon
root 16927 1 0 Feb 25 2 1:20 /usr/lib/nut/bin/nutdrv_gx —-a innotech
nut 10257 1 0 May 06 2 0:39 /usr/sbin/upsd
root 16985 15379 0 11:27:36 pts/1 0:00 grep -Ei nut|ups
nut 10524 10522 0 May 06 ? 0:25 /usr/sbin/upsmon
STATE STIME FMRI
offline 11:26:49 svc:/system/power/nut-driver:innotech

# In the ps listing above, a driver daemon is seen that was started as
# the root user beside the actual service. It has to be stopped too:
:; kill -9 16927

To unconfigure and disconnect the USB link on the OS level, you will need its attachment point identifier. If you don’t know your
system’s current layout (it can change with device re-enumeration due to hot plugging and/or reboots), you can execute c fgadm
—1v, look for the "Information" field resembling your UPS brand, and make note of its "Ap_Id". You can also query a single
device to confirm a guess or your earlier records:

:; cfgadm -1v usbl0/1

Ap_1Id Receptacle Occupant Condition
Information

When Type Busy Phys_1Id

usbl0/1 connected configured ok

Mfg: INNO TECH Product: USB to Serial NConfigs: 1 Config: 0 : 20100826
unavailable usb-input n /devices/pci@0,0/pcil03c,1609@13:1

Disconnect the device; note that if something (typically a program with an open connection) still has a hold on the device, the
system would fail to complete the command:

:; cfgadm -c disconnect usbl0/1

Disconnect the device: /devices/pci@0,0/pcil03c,1609@13:1
This operation will suspend activity on the USB device
Continue (yes/no)? yes
cfgadm: Hardware specific failure: Cannot issue devctl

to ap_id: /devices/pci@0,0/pcil03c,1609@13:1

If that is the case, run ps per above and make sure all NUT driver daemons are stopped (the data server upsd and client upsmon
should be inconsequential in this regard).

Normally, the reconnection should work like this:




NUT USB setup in modern Solaris-like systems (OpenSolaris descendants) 6/6

:; cfgadm -c unconfigure usbl0/1

Unconfigure the device: /devices/pci@0,0/pcil03c,1609@13:1
This operation will suspend activity on the USB device
Continue (yes/no)? yes

:; cfgadm -c disconnect usbl0/1

Disconnect the device: /devices/pci@0,0/pcil03c,1609@13:1
This operation will suspend activity on the USB device
Continue (yes/no)? yes

:; cfgadm -1v usbl0/1

Ap_1Id Receptacle Occupant Condition Information
When Type Busy Phys_1Id

usbl0/1 disconnected unconfigured ok

unavailable unknown n /devices/pci@0,0/pcil03c,1609@13:1

:; cfgadm -c configure usbl0/1
cfgadm: Hardware specific failure: Cannot issue devctl
to ap_id: /devices/pci@0,0/pcil03c,1609@13:1

# Despite the error above, the device is seen now:
:; cfgadm -1v usbl0/1

Ap_1Id Receptacle Occupant Condition
Information

When Type Busy Phys_1Id

usbl0/1 connected configured ok

Mfg: INNO TECH Product: USB to Serial NConfigs: 1 Config: 0 : 20100826
unavailable usb-input n /devices/pci@0,0/pcil03c,1609@13:1

# ... and the driver can start:

:; svcadm enable innotech

When everything gets recovered, you should see it:

Broadcast Message from nut (???) on n541 Mon May 9 12:12:30...
Communications with UPS innotech@localhost established

and upsc innotech@localhost would tell you what it sees :)

3.2 Regular auto-recovery via crontab

Additional tricks that can help involve crontab for regular automated checks if the device got lost. One is just an attempt to
"clear" the service if its earlier startup failed (repetitively) so SMF gave up:

o ¥ ¥ %% gycadm clear innotech 2>&1 | grep -v is not in a maintenance

Another is more complicated and involves some custom scripting:

0,5,10,15,20,25,30,35,40,45,50,55 * * * % MODE=optional /etc/nut/reset-ups-usb- <«
solaris.sh

... where the script would be a copy (customized to your device(s) and connection points!) of reset —ups-usb-solaris.sh.samg
from either scripts/Solaris/ directory in the NUT sources, or a copy which may be available in your system, e.g. under
the /usr/share/nut/solaris—-init/ data directory.




	Change the OS driver binding: use UGEN
	libusb version and binary
	Troubleshooting and reconnecting
	Recycle the USB connection
	Regular auto-recovery via crontab


