
The Kinemage File Format, v1.0

Ian W. Davis, Jane S. Richardson, David C. Richardson

09/27/2023

Abstract

This document describes the syntax and semantics of the core feature-
set of the kinemage �le format. Since even the core features are extensive,
the description has been broken into two logical halves. The �rst section
describes the semantics and high-level syntax of kinemage �les�all the
information typically needed to author a new kinemage �le from scratch.
The second section formally describes the low-level syntax that underlies
the entire format, which is important for programmers writing kinemage
parsers.

This document does not cover the philosophy, rationale, or history of
the kinemage format, nor is it a tutorial in using or creating kinemages.
It assumes the user has some experience viewing and interacting with
existing kinemages and now wants either (1) to create a new kinemage
�le by hand or programmatically, starting from scratch, or (2) modify an
existing kinemage �le by hand at the plain-text level.

Contents

I Semantics 2

1 Overview of a kinemage �le 3

2 Lists 3

3 Points 6

4 Kinemages, groups, and subgroups 7

5 Masters 9

6 Colors and aspects 11

7 Views and display options 12

8 Metadata 14
8.1 Kinemage text hyperlinks . 16

2

9 Alternative spellings 16

II Syntax 17

10 Characters in kinemage �les 18
10.1 Whitespace . 18
10.2 Alphanumerics . 18
10.3 Punctuation . 19

11 Tokens in kinemage �les 19
11.1 Beginning-of-line . 19
11.2 Quoted tokens . 20

11.2.1 Identi�ers . 20
11.2.2 Comments . 20
11.2.3 Aspects . 20
11.2.4 Single quoted strings (pointmasters) 21
11.2.5 Double quoted strings . 21

11.3 Unquoted tokens . 21
11.3.1 Keywords . 22
11.3.2 Properties . 22
11.3.3 Integers . 23
11.3.4 Numbers . 23
11.3.5 Literals . 24

11.4 Plain text blocks . 24

Part I

Semantics

This �rst part of the document describes the semantics and high-level syntax
of kinemage �les, giving descriptions of the most commonly used keywords and
the various options and parameters that accompany them. This level of detail is
important both to kinemage authors and to programmers who want to use the
kinemage format. While the core features described here are fairly stable and
will remain so, additional features may be added with some frequency. Except
as noted, all the features described here work in both Mage and KiNG, which
are the two primary kinemage viewers as of this writing.

A note about syntax: the full description of kinemage syntax appears in the
second part of this document, but it's more information than most authors will
need. The kinemage format is a fairly intuitive, mostly free-form language that
should be easy to pick up. That said, here are three �gotchas� that new authors
should be aware of:

[1] Overview of a kinemage �le 3

� Keywords (words starting with the @ symbol) must appear at the very
beginning of a line in order to be recognized. Nothing can come before
them, not even spaces.

� Properties (words that end with an = sign) cannot have a space (or any-
thing else) between the word and the = sign. Space after the = is op-
tional, but it is not permitted before. Thus, we can write color= red or
color=red, but not color = red. This looks a little awkward at �rst,
but you'll soon get used to it.

� List de�nitions must appear all on one line. This is a good rule of thumb
for the whole �le (though not a requirement): each keyword must start
a new line, and all its relevant options and parameters should probably
appear on that same line. Regardless, the next keyword must start another
line. When de�ning a list, one point is typically listed per line.

1 Overview of a kinemage �le

The kinemage �le format is a plain-text, human-readable, human-editable for-
mat for three-dimensional vector graphics. The overall structure is an op-
tional @text block describing the contents of the �le, followed by one or more
kinemages. The kinemages themselves encode a hierarchical organization of 3-D
graphics primitives like lines, balls, and triangles that have been optimized to
convey the most possible information about the ideas underlying the visualiza-
tion. Each of these kinemages begins with a @kinemage statement, followed
by display options, view and master de�nitions, etc. (the header), and then
followed by a series of group, subgroup, list, and point de�nitions (the body).

2 Lists

Depending on how you look at it, either the list or the point could be considered
the fundamental unit of a kinemage. Points specify particular locations in three-
dimensional space by listing an X, Y, and Z coordinate. Lists bring together
collections of points to describe 3-D primitives. Some primitives are de�ned by
only one point (for instance, a ball is speci�ed by it's center), but others need
more � a line segment needs two endpoints, and a triangle needs three corners.
Each list has enough points in it to describe one or more primitives, and all the
primitives in a list are of the same type1 � all balls, say, or all triangles. For
example, a list might contain all the line segments that form the outline of a
cube, or all the dots representing one particular data set on a graph. Where
it makes logical sense to group a bunch primitives into a single list, it's a good
idea, because it will more e�cient than creating a separate list for each one.

There are seven basic types of list, corresponding to seven di�erent types of
primitive:

1In some instances, Mage can accomodate various point types within one list.

[2] Lists 4

Ball lists specify spheres of some �nite size. They're typically drawn as �at,
�lled circles plus a little white highlight, which looks quite convincing as a
�real� rendered sphere. However, they may not look right if they intersect
other objects, with one exception: line segements that start or end exactly
at the ball's center are rendered correctly.

Sphere lists are very similar to ball lists, but hint to the display program
that the ball is large and may intersect other objects in a complex way.
Depending on the kinemage viewer you're using, the spheres may look
more realistic, at the expense of taking more time to render.

Ring lists are screen-oriented circles around a point � think of them as just
the outline of a ball. They're useful in place of balls in situations where
you want to see (for example) lines converging on the center point.

Dot lists specify small points in space, like a ball or sphere that's just big
enough to see. They're a good alternative to very small balls or spheres,
because they're faster to draw.

Label lists specify short text labels anchored to a particular point in space.
The label swings around as the kinemage is rotated so it's always facing
forward and is right side up.

Vector lists specify a set of line segments, which are often connected head-
to-tail in a polyline. However, a vector list can contain any number of
separate line segments, too.

Triangle lists specify �lled triangles. Like vectors are often chained together
into polylines, triangles are chained into triangle strips. Points 1, 2, and
3 make up the �rst triangle; then points 2 and 3 are reused together with
point 4 for a second triangle. On it goes, with a 3, 4, and 5 making the
third triangle; 4, 5 and 6 making the fourth, and so on. Traditionally, all
the triangles in one list have to be part of a single connected strip.

Ribbon lists are very similar to triangle lists, except that pairs of consecutive
triangles are assumed to lie in the same plane. In fact, the lighting e�ects
are manipulated so that the four points look like they form a �at, four-
sided polygon even if they really don't. As the name implies, this is used
for ribbons that curl through space but need to look smooth.

In the kinemage �le, lists are speci�ed by an @ symbol followed by the list type
and the word �list�, all lower case and without any spaces in between. The entire
list de�nition must be on a single line; it cannot be split across multiple lines.
The �rst item after the @list keyword is the name of the list, enclosed in curly
braces. The options listed below then follow in any order, as desired:

� The word off requests that the list not be initially visible when the
kinemage is loaded. If it has an on/o� button in the button panel, the
user may turn it on manually, or it may be turned on by a master button.

[2] Lists 5

� The word nobutton requests that the list not have an on/o� button even
if it would have otherwise. Note that many lists will not have an on/o�
button anyway because their subgroup or group is dominant.

� radius= #.# and width= # are used to specify the size of balls/spheres/rings
and the line width of vectors/dots/rings, respectively. Radius may be a
decimal number, but width refers to a number of pixels on the screen and
must be an integer between 1 and 7. Lines and dots default to a width of 2.
You should always specify a radius for balls, spheres, and rings explicitly.

� Ball or sphere lists marked with nohighlight will be drawn as �at colored
disks and will not have a white highlight drawn to make them look 3-D.

� color= colorname speci�es the base color for objects in the list; however,
the list color interacts with the colors of individual points (if any). By
default, lists are white. See section 6 for more information about colors.

� alpha= #.# speci�es the opacity of objects from 1.0 (fully opaque) to
0.0 (invisible). Alpha is currently supported only by KiNG and only for
triangle, ribbon, ball, and sphere lists.

� master= {mastername} speci�es that this list is controlled by the named
master. A given list may have multiple master= statements, but you
should read section 5 to see how multiple masters interact.

� clone= {listname} and instance= {listname} specify that this list has
the same points in it as the named list, which must be of the same type
and must have been declared before the current list. Although is has
the same points, this list must have its list properties speci�ed explicitly
(color, radius, etc.), even if they are intended to be the same as those of the
cloned/instanced list. Clone is purely a convenience for kinemage authors;
the current list will be a totally independent copy of the cloned list that
just happens to have the same contents. When the kinemage is saved,
both lists will be written out in full without using clone=. Instance, on
the other hand, actually re-uses the same point data, so editing the points
of one list will a�ect all its instances too. The instance= property will
appear in the saved kinemage. Instance is a good way to make more
e�cient use of memory in certain cases, such as when an identical object
needs to appear in multiple frames of an animation.

� dimension= # speci�es how many coordinates will be associated with each
point in the list (default is 3 � x, y, z). This is useful for plotting and
graphing in high-dimensional spaces. All the lists in a kinemage should
either have the same number of dimensions or be normal lists without a
dimension speci�er.

A few sample list declarations are shown below.

[3] Points 6

@balllist {Circles} radius= 3.5 nohighlight off

@spherelist {Mars look-alikes} radius= 10000 color= red master= {planets}

@vectorlist {tiger's tail} color= orange width= 5 nobutton

@trianglelist {veil} color= yellowtint alpha= 0.25

@trianglelist {a newer veil} color= white alpha= 0.3 clone= {veil}

3 Points

Points determine the actual geometry of the objects in a kinemage �le. At a
minimum, each point must specify an X, Y, and Z coordinate. (Points in lists
with a dimension= may have more or less than three coordinates.) Coordinates
are given in a right handed Cartesian system. The �Cartesian� part just means
that the X, Y, and Z axes are all at right angles to each other. The �right
handed� part means that if you're looking down the positive Z axis toward the
origin, the positive Y axis goes up and the positive X axis goes to the right.
Coordinates can be any possible decimal number, but it's a good idea to not
make them all really large (say, all in the millions) or really small (thousandths
and less), because you may lose accuracy in some kinemage viewers.

In addition to coordinates, it's a very good idea to give every point an ID,
even though this is not strictly required. The ID appears when the user picks
the point with the mouse, and for points in a label list the ID is actually the
text that will be displayed for the label. IDs are allowed to be empty (just a
pair of curly braces), and this is preferrable to no ID at all2. The special ID {�}

means that the point will have the same ID as the point that preceded it; if all
the points in a list have the same ID, all but the �rst can have {�} for their ID.

Points are typically writen one to a line, though they can span multiple lines
or more than one point can appear on the same line. The ID must come �rst,
enclosed in curly braces, and the coordinates must come last. In between, there
are a lot of per-point options that can be employed in any order:

� The P �ag marks a point in a vectorlist as starting a new polyline. The
�rst point in the list is automatically P, but after that line segements are
drawn from one point to another until a P point is encountered. To draw
a series of disconnected single line segments, every other point should be
marked P (starting with the �rst one). The P �ag does not a�ect triangle
lists.

� Points marked with the U �ag are �unpickable� under normal circum-
stances, meaning that clicking on them with the mouse will not do any-
thing.

� The X �ag can be used to break one triangle list into multiple triangle
strips, analogous to the P �ag for vector lists.

2KiNG interprets a missing point ID as the empty string, while Mage displays the X,Y,Z
coordinates of the point as its ID in this case.

[4] Kinemages, groups, and subgroups 7

� Points can be given their own color just by writing the color name. They
can also be assigned alternative colors for di�erent coloring schemes through
the use of aspects (see section 6). Aspects are lists of single uppercase let-
ters A - Z enclosed in parentheses. If aspects are used in a �le, every point
should have the same number of aspects speci�ed. The color of a line
segment is the color of its second point, not its �rst; likewise, the color of
a triangle is the color of its third point.

� Width and radius can also be speci�ed on a point-by-point basis. Widths
are speci�ed as width1, width2, ... width7; radii are speci�ed as r= #.#.

� The visibility of points can also be controlled by pointmasters, which are
analogous to the masters that control lists, subgroups, and groups. Point-
masters are identi�ed by single character codes (the lowercase letters a -
z and the numbers 1 - 6) enclosed in single quote marks. Multiple point
masters interact di�erently than multiple masters do; see section 5 for
more information.

� Each point can have an additional text �comment� associated with it,
which should be enclosed in angle brackets. Some kinemage viewers use
these for special purposes, while others may ignore them altogether.

Some example point de�nitions are shown below; these points are not intended
to all belong to the same list!

{clown nose} red r= 2.4 1.0 2.0 3.0

{x-axis}P U 0 0 0

{�} <other end of X axis> U width1 10 0 0

{really complicated} 'aeg' (HZTU) 8.31 19.78 42.13

4 Kinemages, groups, and subgroups

Complicated kinemages may have hundreds of lists in them, which would quickly
become unmanagable for the user. Groups and subgroups allow us to organize
lists hierarchically, so that sets of related objects can be shown or hidden as
a unit, and unneccessary detail can be supressed. There are also cases where
several kinemages deal with di�erent aspects of the same visualization problem,
and the kinemage format provides for collecting these multiple kinemages into
a single �le.

Only the start of each kinemage, group, subgroup, or list is marked, and not
the end. A kinemage declaration must appear at the start of the �le, and every-
thing else in that �le is considered part of the kinemage until another kinemage
declaration is found. In the same way, a group includes all the subgroups and
lists that follow it, until another group is declared or the end of the �le is reached.
Likewise, subgroups contain all the lists that follow them, until another group
or subgroup declaration is encountered. Lists contain all the points that follow
them, until another list, subgroup, or group declaration is encountered. In this

[4] Kinemages, groups, and subgroups 8

way, a hierarchical organization is built up with points gathered into lists, lists
gathered into subgroups, subgroups gathered into groups, and groups gathered
into kinemages.

Kinemage declarations are very simple: the @kinemage keyword, followed
by an identifying number. The �rst kinemage in a �le should be number 1, the
second should be number 2, and so on3. Thus, every kinemage �le starts like
this, with nothing preceding it except possibly a @text block (see section 8):

@kinemage 1

Group and subgroup declarations are only slightly more complicated. They
start with @group or @subgroup, respectively, followed by the (sub)group name
in curly braces, possibly followed by some of the following �ags. As with lists,
group and subgroup declarations may not span multiple lines.

� The word off requests that the (sub)group not be initially visible when
the kinemage is loaded. If it has an on/o� button in the button panel, the
user may turn it on manually, or it may be turned on by a master button.

� The word nobutton requests that the (sub)group not have an on/o� but-
ton even if it would have otherwise. Note that some subgroups will not
have an on/o� button anyway because their group is dominant.

� The word dominant requests that the buttons of objects below this (sub)group
in the hierarchy not be shown. Dominant subgroups hide the buttons of
their lists; dominant groups hide the buttons of their subgroups and their
lists.

� The word collapsable is similar to dominant. When a collapsable group
is on, the buttons of its subgroups and groups are visible as usual. When
the collapsable group is o�, however, those buttons are supressed, as
though it were dominant. The situation is analogous for collapsable sub-
groups and the lists under them.

� master= {mastername} speci�es that this (sub)group is controlled by the
named master. A given (sub)group may have multiple master= state-
ments, but you should read section 5 to see how multiple masters interact.

� dimension= # is a shortcut for specifying dimension= on all the lists in
a particular group or subgroup.

� The words animate and 2animate can only be used with groups. Groups
so marked become part of the �rst or second animation, respectively.
When the kinemage is loaded, all animate groups except the �rst one
are turned o�, regardless of any off �ags. The user can the cycle the
animation forward/backward so that the next/previous group is on and

3Generally, you're OK as long as the numbers are all di�erent and are monotonically
increasing.

[5] Masters 9

all the others are o�. Animate groups can be turned on or o� by the user
without any restrictions, but stepping forward or backward in the anima-
tion will again ensure that only one of them is on at a particular time. The
2animate �ag lets authors establish a second, unrelated animation that
behaves in exactly the same way. In general, no group should be marked
with both animate and 2animate.

� The word select can only be used with groups. Groups so marked are
understood to be data points in some kind of plot, so that tools for se-
lecting subsets of data should operate on select groups and ignore other
groups.

The following are typical group and subgroup declarations:

@group {first frame} dominant animate

@group {not visible} dominant nobutton master= {use this instead}

@group {lots of stuff} collapsable

@subgroup {not very important} off master= {optional stuff}

5 Masters

The so-called �master� buttons provide an important facility for complex kinemages:
the ability to group and organize the elements by a secondary scheme that may
be very di�erent from the primary, hierarchical organization. For example, if
you were making an interactive map of the world, you might decide to make
one group for each continent, and one subgroup for each country. However, it
might also be nice to turn on and o� all the rivers together, or all the cities.
There might be a {rivers} lists in each country, but without masters all of
them would have to be toggled individually. With masters, you can have all of
the rivers toggled by a single button that lives outside the ordinary hierarchy
of groups, subgroups, and lists.

Masters are automatically created whenever they're mentioned in the master=
part of a list, subgroup, or group declaration. Their buttons appear in the same
button panel as group/subgroup/list buttons, but after all of those and some-
what separated from them. You can control the order and presentation of mas-
ters a little bit better by using the @master keyword, which usually appears in
the kinemage �header� � after @kinemage but before the group, subgroup, and
list declarations. @master is followed by the master name in curly braces, which
must exactly match the name used in master= statements. The name may be
followed by the indent �ag, which hints that its button should be indented
relative to the other master buttons so as to imply the same sort of hierarchy
that occurs in the regular buttons. (However, for the masters this is purely
cosmetic.)

The e�ect of a master on a list, subgroup, or group is transient � turning
something on or o� with a master does not prevent the user from turning that
item on or o� manually. However, for items marked with more than one master,
the masters do interact with each other. Consider the following list:

[5] Masters 10

@dotlist {demo list} master= {A} master= {B} master={C}

If any one of the master buttons is toggled from on to o�, our list will be
turned o�. However, if one of the masters is toggled from o� to on, our list
will be toggled on if and only if all of the other masters that control it are also
currently on. (Of course, if the list was already on, it will remain so.) If, for
example, masters B and C are o� and master A is on, then turning B on will
not turn the list on (because C is o�). Subsequently turning C on will, however,
turn the list on (because both A and B are also on).

Individual points can also be controlled by a master-like mechanism, called
pointmasters. Due to memory limits, there are only 32 possible pointmasters
that can be used in a particular kinemage. They are identi�ed by single-
character codes; lowercase letters are typical, but any legal character is allowed.
One or more of these single-character codes are listed inside of single quote
marks for some or all of the points in a kinemage4. Each pointmaster code is
associated with a named master button by a line that starts with @pointmaster,
then one (or rarely, more than one) single-character code between single quotes,
then the master name in curly braces. If the name matches with the name of
an ordinary master, then that button will control both the list/subgroup/group
master and the pointmaster.

As with masters, the @pointmaster declaration is optional; pointmaster
buttons will be created automatically if needed. Likewise, multiple pointmasters
for a single point interact the same way that multiple masters for a single list
do: that is, any master will turn the point o�, but all of them must be on in
order to turn it back on.

By default, master and pointmaster buttons will begin in the �on� (checked)
state, unless all of the groups/subgroups/lists controlled by that master are
marked as off in the kinemage, in which case the master starts o� unchecked.
Master and pointmaster declarations can optionally be followed by either on or
off, in which case the kinemage acts as though that master was clicked on or
o� immediately after the kinemage was loaded. This is not used very often, but
can be helpful for quickly modifying which groups, etc. will be initially visible
when the kinemage is loaded.

Shown below are some typical master and pointmaster declarations:

@master {rivers}

@pointmaster 'a' {large cities}

@pointmaster 'b' {small cities} off

@pointmaster 'ab' {all cities}

@master {dual purpose} indent

@pointmaster 'c' {dual purpose}

4Mage does not (yet) support multiple pointmasters for a single point, so it will only accept
a single character in single quotes.

[6] Colors and aspects 11

6 Colors and aspects

Color-coding is one of the most-used feature in any visualization system, so the
kinemage format provides lots of options related to coloring. We've already
seen how to assign a color to a whole list or a single point in their respective
sections, and we've seen that point colors, when present, generally override the
color speci�ed for the list. Below are all 28 of the color names that can be used
with lists and points:

Saturated colors Semi-sat. colors Pastel colors Neutrals

red (A) pink (N) pinktint (V)
orange (B) peach (P) peachtint (Q)
gold (C)
yellow (D) yellow (D) yellowtint (R)
lime (E)
green (F) sea (G) greentint (S)
sea (G) white (W)
cyan (H) gray (X)
sky (I) brown (Y)
blue (J) sky (I) bluetint (T)

purple (K) lilac (O) lilactint (U) invisible (Z)
magenta (L) deadwhite
hotpink (M) deadblack

The letters listed in parentheses are the aspect codes for each color, which
will be discussed below. Colors are organized so that the columns form progres-
sions of hue, and the rows form progressions of saturation, although the rela-
tionships are somewhat di�erent on a white background. Some colors appear
in two di�erent places in the chart because they serve two di�erent �purposes�.
See the palette kinemage built into KiNG for more details on how to use color
e�ectively.

Sometimes you might develop a kinemage in which tens or hundreds of di�er-
ent lists should all be the same color � but you aren't sure which color. Instead
of using the �nd-and-replace feature of a text editor to test out di�erent op-
tions, you can de�ne a symbol to stand in for the color, and then change only
the de�nition of the symbol. This symbolic or �variable� color name is called a
colorset, and is declared with the @colorset keyword, followed by the symbolic
name in curly braces and then the name of a normal kinemage color. Later on,
you can assign the symbolic color name to lists (but not individual points). For
example,

@colorset {water color} sky

@vectorlist {river} color= {water color}

@balllist {ponds} color= {water color}

It is also possible to de�ne custom colors that are not part of the default
kinemage palette. They are speci�ed in terms of hue, saturation, and value
(HSV). Hue ranges from 0 (red) to 360 (also red) degrees; saturation ranges

[7] Views and display options 12

from 0 (grayscale) to 100 (intense color); and value ranges from 0 (black) to
100 (full brightness). It is possible to give di�erent de�nitions for white vs.
black background, as is done for most kinemage colors, but if the speci�cation
for white background is left o�, the same color will be used on both black and
white. For example,

@hsvcolor {Evergreen} 120 70 30

@hsvcolor {Smoke} 0 0 80 0 0 20

@hsvcolor {Graphite} 0 0 20 0 0 80

Since color schemes are so important to visualization, it is sometimes useful to
have multiple color schemes within one kinemage. For example, a map might
be colored by elevation, by rainfall, or by population density, depending on
its intended use. Aspects provide a mechanism for specifying more than one
possible point color for each point, only one of which is active at a particular
time.

Aspects must be declared with the @aspect keywords in the kinemage header;
the declaration is not optional as it is e.g. for masters. Each point that has
aspect coloring (not all points in a kinemage have to) should have the same num-
ber of aspect codes as there are @aspect de�nitions in the kinemage. When a
point should be specially colored for some aspects but not others, a space char-
acter (� �) can be used instead of a letter to mean that point's �normal� color.
As explained in the section on points, the single-letter aspects codes for a point
appear inside parentheses as part of the point de�nition (see section 3). For
example:

@1aspect {Population density}

@2aspect {Quality of universities}

@3aspect {Number of bars}

@balllist {Cities in the Triangle} color= white radius= 2

{Durham} (ABC) 0 1 0

{Raleigh} (DEF) 1 0 0

{Chapel Hill} (G I) -1 0 0

{Cary} (J) 0.5 -0.5 0

7 Views and display options

There are a number of keywords that control the default presentation of a
kinemage to the user. Choosing the right options is an important guide to
the user, although s/he can override them later.

All of the following keywords are used to de�ne a pre-set view of the kinemage.
The keywords are given a leading number that de�nes which view they belong
with (show below for view 1, but 2, 3, etc. can be substitued to de�ne addi-
tional views). View 1 is the default that will be shown when the kinemage is �rst
opened. Although a view de�nition may legally omit any of these components,
it's best to de�ne all of them explicitly to ensure the desired behavior. In the
de�nitions below, the symbol # stands for any number, decimal or integer.

[7] Views and display options 13

@1viewid {VIEW NAME} gives a label that will identify this view to the
user. It should be unique, but is not required to be.

@1center # # # gives the coordinates of the center of the view. The model
will rotate around this point, which will be centered.

@1matrix # # # # # # # # # gives an orthonormal rotation matrix
that de�nes the orientation of the model. (Orthonormal meaning all the
row vectors are orthogonal to each other, all the column vectors are or-
thogonal to each other, and all these vectors have length 1.) If you intend
to multiple this matrix by your coordinates (as a column vector), you
should read the numbers as going down the �rst column, then down the
second, and so on. If you intend the multiply your coordinates (as a row
vector) by the matrix, then you should read the series of numbers as going
across the �rst row, then across the second, etc. That is, one version of
the matrix is the transpose of the other.

@1span # de�nes how much of the kinemage is visible�whether you're zoomed
in close or zoomed way out. Speci�cally, the given distance in model co-
ordinates will just �ll the graphics area either horizontally or vertically
(whichever is smaller). Thus, larger spans show more of the model, and
smaller spans show less (but in greater detail).

@1zoom # is an alternative speci�cation for span; it controls how much of
the kinemage is visible. A zoom of 1.0 ensures the whole kinemage just
�ts within the graphics area, and larger zooms cause the view to zoom in
closer. It's better to give a span than a zoom, because zoom depends on
the space the kinemage occupies. If later add (or remove) something to
the kinemage that changes its �envelope�, then your prede�ned views will
shift to show something other than you had originally intended. Span, on
the other hand, is independent of the content of the kinemage.

@1zslab # is the complement of span or zoom�it de�nes how thick a slice
of the model you can see. Obviously, if the full model was displayed in-
focus when you were zoomed in very close, all the extra detail in the far
background could be extremely distracting. Ditto for things right in front
of your nose that could blot out the area of interest. Thus, everything
that's more than a certain distance in front of or behind the center of
rotation is not shown. (Computer graphics folks call this a �slab� or a pair
of �clipping planes.�) The units here are arbitrary: a value of 200 means
that the front-to-back distance between clipping planes is equal to (the
lesser of) the width or height of the graphics area. Other values mean the
slab will be #/200 times this wide, so smaller values give a thinner slab
and larger values, a thicker one.

@1axischoice # # # speci�es which coordinates will be mapped to the X,
Y, and Z axes (respectively) for high-dimensional kinemages. The indices
start from 1, so �1 2 3� would correspond to the normal X, Y, Z display.

[8] Metadata 14

This cannot be used to reorder the axes for normal 3-D points, but it can
for high-dimensional points (i.e., �3 2 1� is legal only for high-dimensional
points). This keyword should be omitted from kinemages that don't have
any high-dimensional points in them.

There are a number of other useful keywords that correspond to display settings
common in most kinemage viewers. As note above, these are only hints: the
user can always choose to override them, and the kinemage viewer is not even
guaranteed to pay attention to them.

@perspective suggests that the kinemage been shown with simulated per-
spective projection. This is often desirable for geometric objects, so that
parallel lines actually converge in the distance, cubes really look like cubes,
and so on. By default, kinemages are shown with orthographic projection.

@�at hints that there is no useful depth (Z-coordinate) information in the
kinemage, and that the default mode of interaction should be translation
(sliding the kinemage around in the X-Y plane) rather than rotation. This
is helpful for things like 2-D charts and graphs.

@onewidth asks that lines be drawn in a consistent width regardless of their
location. By default, lines in the front of the view are thicker and lines
in the back are thinner, to aid in giving a feeling of depth and three-
dimensionality.

@thinline suggests the default line width be as thin as possible, rather than
the standard 2 pixels.

@whitebackground hints that the kinemage would look best on a white back-
ground, with its associated color palette. By default, the black background
and palette are used.

@listcolordominant asks that the individually speci�ed colors of points be
ignored in favor of the base color of their list.

8 Metadata

In addition to describing a geometrical object or scene, the kinemage language
allows authors to describe the meaning of the graphical objects. This sort
of information is thus data about the (primary) data, a.k.a. metadata. The
following keywords are supported:

@text marks the beginning of a block of free-form, plain-text information that
should be made available to users of the kinemage. The text continues
until the next keyword is encountered; thus, the only restriction on the
content of text block is that it not contain any @ symbols at the very
beginning of a line. Indenting the @ with a space is a perfectly acceptable
way of getting around this limitation. Text is speci�ed for the kinemage

[8] Metadata 15

�le as a whole. Thus, it will probably pertain to all the kinemages in
that �le, whether by describing them sequentially or discussing the rela-
tionships among them. Some kinemage viewers support special hypertext
links in the text, which are delimited by *{ and }*. The speci�c syn-
tax is described below. Multiple @text blocks in the same �le will be
concatenated together in the order they appear.

@caption works much like @text, but is generally shorter (a few lines at most)
and pertains to a single kinemage. Thus, @caption must appear some-
where after a @kinemage statement, while @text can be the �rst thing in
a �le.

@title {KIN TITLE} gives a brief title that identi�es this kinemage, as a
more user-friendly label than its index number.

@copyright {COPYRIGHT INFO 2004} noti�es users of who owns the
copyright to this kinemage �le.

@pdb�le {FILENAME} lists a Protein DataBank �le that corresponds to
the model shown in this kinemage. Used only for kinemages showing
macromolecular structures.

@map�le {FILENAME} lists an electron density map that corresponds to
the model shown in this kinemage. Used only for kinemages showing
macromolecular structures.

@command {UNIX CMD} suggests a command that the user or the kinemage
viewer could run to generate additional kinemage data, which could then
be merged into the current �le.

@dimensions {DIM1} {DIM2} ... speci�es human-readable labels for the
coordinates in a high-dimensional kinemage. For use with the list dimension=
property and @axischoice.

@dimminmax MIN1 MAX1 MIN2 MAX2 ... speci�es the minimum and
maximum values for a high-dimensional kinemage. These ranges are not
enforced on individual points, but are used for scaling the axes when
displaying parallel coordinates.

@dimscale S1 S2 ... speci�es the scaling that should be applied to convert
coordinates as they appear in the kinemage to coordinates as they should
be displayed to the user. See below for more details.

@dimo�set T1 T2 ... speci�es the translation that should be applied to con-
vert coordinates as they appear in the kinemage to coordinates as they
should be displayed to the user. If both scaling and o�set are speci�ed, the
original transform is understood to be kin = s(orig+t), and the transform
from coordinates stored in the kinemage �le back to coordinates intended
for display is then display = orig = (kin/s) − t. The default values are
s = 1 and t = 0.

[8.1] Kinemage text hyperlinks 16

8.1 Kinemage text hyperlinks

Both Mage and KiNG support hypertext commands in the text window. When
the user clicks on one of these with the mouse, some action is invoked. Hyper-
links are delimited by *{ and }*. They may contain multiple commands, which
are separated by commas. Common commands are:

kinemage 1 Takes the user to the �rst kinemage in the �le.

kin 1 (short form for �kinemage�)

view 2 Takes the user to the second view in the current kinemage. May be
combined with �kinemage�.

v=2 (short form for �view�)

allo� Turns o� all master buttons. Usually followed by one or more �master ...
on� commands.

master= {Master Name} on/o� Turns the speci�ed master on or o�.

m={Master Name} on/o� (short form for �master�)

Some examples of hyperlinks appear below:

{KINEMAGE 3}

{Kin 2, View 4}

{kin 3, v=5, alloff, m={charges} on, m={Hphobics} on}

{view 5, master={mc} off}

9 Alternative spellings

Some of the keywords in kinemage �les may take alternate forms, some of which
are historical artifacts and some of which are attempts to accomodate both
American and British spelling. The forms given above are the preferred ones;
the alternatives listed below may not be supported by all kinemage viewers.

@balllist @ball

collapsable collapsible recessiveon

color= colour=

deadblack black

@dimensions @dimension

@dotlist @dot

@�at @�atland @xytranslation

gray grey

17

@hsvcolor @hsvcolour

L l D d (the unneccessary point �ag: L for Line-to, D for Draw-to)

@labellist @label

@listcolordominant @listcolordom

nohighlight nohilite nohi

orange rust

P p M m (the point �ag: P for Point, M for Move-to)

@ribbonlist @ribbon

@ringlist @ring

sea seagreen

sky skyblue

@spherelist @sphere

@subgroup @set

@trianglelist @triangle

U u (the point �ag for Unpickable)

@vectorlist @vector

@whitebackground @whiteback @whitebkg

X x (the point �ag)

yellowtint paleyellow

@zslab @zclip

Part II

Syntax

This part of the document describes the low-level syntax that is common to
all kinemage formats, regardless of how many additional functionalities (seman-
tics) they incorporate. The descriptions are very precise, at the cost of being
somewhat long and tedious. However, this level of detail is necessary for pro-
grammers who wish to interpret kinemage �les reliably, and may be helpful to
authors as well. This level is expected to be extremely stable and change very
slowly.

[10] Characters in kinemage �les 18

The descriptions in the two parts of this document assume a similar division
of labor in the implementation of computer programs that process kinemages:
the low-level syntax (this part) is handled by a tokenizer, which can separate a
stream of characters into meaningful atomic units. The semantics and high-level
syntax (the preceding part) are handled by a parser, which is responsible for
understanding, e.g., the relationships among graphics objects and their implied
hierarchical organization.

10 Characters in kinemage �les

Kinemage �les are plain text �les encoded according to the ASCII standard5,
which de�nes 128 characters. Each character is stored in the lower 7 bits of
a single byte. Only ASCII characters between 32 and 126 inclusive, plus 9
(horizontal tab), 10 (newline), 12 (formfeed), and 13 (carriage return) are legal
characters in a kinemage �le (numbers given are in decimal).

A kinemage tokenizer may check for and report illegal characters, but is not
required to. If the tokenizer does �nd illegal characters, they should not cause
a fatal error, but should instead be treated as alphanumerics (see section 10.2).

10.1 Whitespace

Whitespace characters are the space (32), horizontal tab (9), newline (10), form-
feed (12), carriage return (13), and the comma (44). Commas are de�ned as
whitespace to simplify treatment of a sequence of numbers, which is often writen
out with commas as separators.

The kinemage format is whitespace insensitive: these characters carry no
meaning and may be discarded at the tokenizer level. Where whitespace is
called for, one or more whitespace characters may be used, and any sequence of
continguous whitespace characters is treated as a single occurance of whitespace.
However, there is one important semantic attribute conveyed by whitespace:
the newline and carriage return characters impart the beginning-of-line (BOL)
property to any token immediately following them. See section 11.1 for details.

When using whitespace, keep in mind that kinemage �les should be human-
readable and human-editable. Line length should not exceed 80 characters, but
super�uous line breaks should be avoided. Single spaces are the preferred form
of whitespace within a line. These suggestions are merely matters of style, and
a kinemage tokenizer must not rely on them being followed.

10.2 Alphanumerics

Alphanumeric characters are the uppercase letters A-Z, the lowercase letters
a-z, and the digits 0-9. Note that kinemage �les are case sensitive. Kinemage
tokenizers must not convert or mangle the case of any tokens in a kinemage �le,

5See http://www.asciitable.com/ for details.

[10.3] Punctuation 19

and tokens that di�er only by case must still be considered distinct from one
another.

10.3 Punctuation

All legal characters that are neither classi�ed as whitespace nor as alphanumerics
are regarded as punctuation. These characters have a variety of functions in the
kinemage format. The following characters already have well-de�ned function
and syntax associated with them:

@ () - = + { } � ' < . >

At the moment, no special signi�cance has been attached to the following char-
acters:

` ~ ! # $ % ^ & * _ [] \ | : ; / ?

However, a future version of the format may de�ne meanings for them.

11 Tokens in kinemage �les

Files in kinemage format can be thought of a sequences of tokens (meaningful),
each separated from the others by zero or more whitespace characters (mean-
ingless). Tokens are divided into two classes, quoted and unquoted. Quoted
tokens have clear start and end signals, so they can occur with no interven-
ing whitespace and still be separable. Unquoted tokens lack clear start and/or
end signals. Thus, at least one whitespace character is required between two
unquoted tokens in order to separate them from one another.

Theoretically, each token may be of any length, from one character (even zero
characters, for quoted tokens) up to the largest string that will �t in memory.
In practice, however, tokens should be fairly short; 20 characters or less is a
reasonable guideline. No token should exceed 256 characters in length, and
more stringent restrictions on length may be imposed on some tokens by the
higher-level syntax.

The names given to token types below re�ect their usual function in a
kinemage �le, but they are not restricted to that function. For example, an
identi�er usually names some object, but it can also enclose a command line, a
�le name, and so on.

11.1 Beginning-of-line

Beginning-of-line (BOL) is a property of certain tokens that may in�uence their
interpretation by the parser. For instance, for a token to be recognized as a
keyword (see section 11.3.1), it must occur at the beginning of a line. A token
is considered BOL under any of the following conditions:

� The �rst character of the token is the �rst character in the �le

[11.2] Quoted tokens 20

� The �rst character of the token is immediately preceded by a newline

� The �rst character of the token is immediately preceded by a carriage
return

11.2 Quoted tokens

Quoted tokens all have explicit markers for the beginning and end of the token.
This simpli�es the parsing of these tokens, and enables one to classify the type
of token present after parsing the �rst character of it. However, care must be
taken to close every token that is opened. To aid authors in discovering such
errors in their kinemages, it is recommended that kinemage tokenizers report a
non-fatal error when they encounter the end of the �le before closing an open
quoted token.

11.2.1 Identi�ers

Identi�ers are strings quoted by curly braces, like this:

{an identifier}

An identi�er token begins when an opening curly brace is encountered outside
of any other quoted token (but possibly �inside�, i.e., immediately following, an
unquoted token). It terminates as soon as the number of closing curly braces
encountered in the course of parsing this token equals the number of opening
curly braces encountered. That is, curly braces may be nested within an identi-
�er, but only as long as they are balanced. Otherwise, an identi�er may contain
any legal character for a kinemage �le.

11.2.2 Comments

Comments are strings quoted by angle brackets, like this:

<a comment>

A comment token begins when an opening angle bracket is encountered outside
of any other quoted token (but possibly �inside�, i.e., immediately following, an
unquoted token). It terminates as soon as the number of closing angle brackets
encountered in the course of parsing this token equals the number of opening
angle brackets encountered. That is, angle brackets may be nested within a
comment, but only as long as they are balanced. Otherwise, a comment may
contain any legal character for a kinemage �le.

11.2.3 Aspects

Aspects are strings quoted by parentheses, like this:

(an aspect)

[11.3] Unquoted tokens 21

An aspect token begins when an opening parenthesis is encountered outside of
any other quoted token (but possibly �inside�, i.e., immediately following, an
unquoted token). It terminates as soon as the number of closing parentheses
encountered in the course of parsing this token equals the number of opening
parentheses encountered. That is, parentheses may be nested within an aspect,
but only as long as they are balanced. Otherwise, an aspect may contain any
legal character for a kinemage �le.

11.2.4 Single quoted strings (pointmasters)

Pointmasters are represented as strings deliminted by single quote marks, like
this:

'abc'

A single quoted token begins when a single quote mark is encountered outside
of any other quoted token (but possibly �inside�, i.e., immediately following, an
unquoted token). It terminates as soon another single quote mark is encoun-
tered. That is, single quoted strings may not contain embedded single quotes,
and no mechanism exists to escape this limitation. Otherwise, a single quoted
string may contain any legal character for a kinemage �le.

11.2.5 Double quoted strings

Double quoted strings are de�ned analogously to single quoted strings, like this:

�abc�

A double quoted token begins when a double quote mark is encountered outside
of any other quoted token (but possibly �inside�, i.e., immediately following, an
unquoted token). It terminates as soon another double quote mark is encoun-
tered. That is, double quoted strings may not contain embedded double quotes,
and no mechanism exists to escape this limitation. Otherwise, a double quoted
string may contain any legal character for a kinemage �le.

At the moment, no function has been ascribed to double quoted strings in
kinemage �les. Until a meaning is de�ned, parsers should ignore them.

11.3 Unquoted tokens

Unquoted tokens are somewhat harder to parse than quoted tokens, because
their start and end signals are less obvious. Also, the entire token may need to
be parsed before one is able to decide what kind of token it is. However, rules
for parsing these tokens are well-de�ned. An unquoted token may begin in any
of the following positions:

� At the beginning of the �le

� Immediately following the end of a quoted token

[11.3] Unquoted tokens 22

� Following one or more whitespace characters, outside of all quoted tokens

An unquoted token may begin with any non-whitespace character that does not
begin a quoted token. An unquoted token is then terminated by the �rst of
these encountered after the initiating character:

� The end of the �le

� Any whitespace character

� The equals sign (ASCII 61)

� Any character that begins a quoted token: { < (' �

While the initiating character is considered part of the token, the terminating
character may or may not be considered part of the token. Whitespace will be
discarded, and quoted token initiators will be part of the next (quoted) token.
The equals sign will be kept as part of this token. Note that this means tokens
ending in the equals sign (called �Properties�; see section 11.3.2) are e�ectively
half-quoted: there need not be whitespace after the equals sign to separate this
token from the next (unquoted) token.

The following sections present rules for categorizing unquoted tokens. The
rules are in order of precedence�that is, a token must be classi�ed according to
the �rst rule it matches from this list. This resolves the ambiguity that would
arise if, e.g., a token began with an �at� sign (like a keyword) and ended with
an equals sign (like a property).

11.3.1 Keywords

Keywords de�ne the major sections of a kinemage. Each keyword begins with
the �at� sign (64). For example, all of the following are keywords:

@kinemage @master @vectorlist

Furthermore, in order to be recognized as a keyword, the �at� sign must occur
at the beginning-of-line (BOL; see section 11.1). In addition to enforcing good
style, this streamlines the processing of plain text segments (see section 11.4).

11.3.2 Properties

Properties are generally used for labeling the meaning of the next token in
the �le. Each property ends with an equals sign (61). The following are all
properties:

color= master= radius=

Note that, by de�nition of an unquoted token, whitespace is forbidden before the
equal sign. Although some old kinemages may allow this syntax, it requires the
tokenizer to read ahead through an arbitrary amount of whitespace following

[11.3] Unquoted tokens 23

every unquoted token in order to determine if it is a property or not. This
behavior could be undesirable if the kinemage contains sections of plain text
(see section 11.4) or is embedded within some other data format.

As described above, there may be whitespace after the equals sign, but it is
not required, even if the next token is unquoted. This semi-quoted (quoted at
the end, but not the beginning) behavior of property tokens is a historical feature
of the kinemage format that has been retained for backward compatibility. The
preferred format for new kinemages is to have a space following the equals sign.

There are no low-level syntactic restrictions on the positioning of proper-
ties; however, at a higher level, syntax generally requires that each property be
followed by a non-keyword, non-property token. For example:

color= red

width= 7

master={backbone}

radius=2.5

11.3.3 Integers

Integers are exactly that: text representations of integer numbers. Legal integers
are either the single digit zero, or a non-zero digit followed by zero or more
additional digits and optionally preceded by a plus or minus sign. The following
are legal integers:

0 +1 7 -365 2020

The following are not legal integers:

-0 007 5+2

Tokens that are not legal integers but consist only of digits 0-9 and the plus and
minus signs (e.g., the above) may be interpretted as integers or as literals on a
case-by-case basis, at the discretion of the tokenizer. It is recommended that a
warning be issued if such a token is encountered.

11.3.4 Numbers

Numbers are a superset of the integers: text representations of real numbers in
decimal or scienti�c notation. Legal numbers follow the pattern6 below:

number ::= integer fraction? exponent?

fraction ::= '.' digit+

exponent ::= ('e' | 'E') integer

6See http://www.garshol.priv.no/download/text/bnf.html for an introduction to Ex-
tended Backus-Naur Form.

[11.4] Plain text blocks 24

Basically, there must be something before the decimal point, even if it's a zero;
there must be something after the decimal point, if there is one; and the expo-
nential part (if present) may be indicated with either a capital or a lowercase
E. The following are legal numbers:

-0.42 1e5 3.14 6.022E+23

Tokens that are not legal numbers but consist only of digits 0-9, the letters e
and E, the decimal point, and the plus and minus signs may be interpretted as
numbers or as literals on a case-by-case basis, at the discretion of the tokenizer.
It is recommended that a warning be issued if such a token is encountered.

11.3.5 Literals

Legal unquoted tokens that cannot be otherwise classi�ed are lumped together
as literals. Note that, by the de�nitions provided for unquoted tokens, a literal
may begin with a numeric digit. This is in contrast to many programming
languages. Those de�ning new semantics for kinemages are strongly advised
against de�ning literals that are not numbers but use only characters allowed in
numbers; the interpretation of such tokens is poorly de�ned (see section 11.3.4).
In fact, it is recommended that literals contain only alphanumeric characters
and that they start with a letter rather than a number. The following are all
legal literals:

animate 2animate red blue green big_long_literal

11.4 Plain text blocks

In addition to the ordinary, tokenizable parts of a kinemage �le, sections of text
data that do not conform to the rules for tokens may be embedded. This data
cannot be processed as usual by the tokenizer for two reasons:

1. The data is in an unknown format, and whitespace may be signi�cant.

2. The data may �open� a quoted string but never close it, thereby hiding
the remaining content of the �le.

An example of this is the plain text write-ups that follow the @text keyword;
however, future kinemages could conceivably contain embedded HTML, base-
64 encoded binary resources, etc. At the moment, there is no purely syntactic
means for identifying such regions. However, upon the request of the parser,
the tokenizer must be able to deliver the unaltered text content of the �le from
the current position until reaching a kinemage-format keyword (i.e., a new line
or carriage return followed by an �at� symbol).

