#include <dune/pdelab/backend/istl/ovlpistlsolverbackend.hh>
|
| ISTLBackend_OVLP_Base (const GFS &gfs_, const C &c_, unsigned maxiter_=5000, int steps_=5, int verbose_=1) |
| make a linear solver object
|
|
template<class M , class V , class W > |
void | apply (M &A, V &z, W &r, typename Dune::template FieldTraits< typename V::ElementType >::real_type reduction) |
| solve the given linear system
|
|
template<typename X > |
X::ElementType | dot (const X &x, const X &y) const |
| Dot product of two vectors. It is assumed that the vectors are consistent on the interior+border partition.
|
|
template<typename X > |
Dune::template FieldTraits< typenameX::ElementType >::real_type | norm (const X &x) const |
| Norm of a right-hand side vector. The vector must be consistent on the interior+border partition.
|
|
const ISTL::ParallelHelper< GFS > & | parallelHelper () const |
|
ISTL::ParallelHelper< GFS > & | parallelHelper () |
|
const Dune::PDELab::LinearSolverResult< double > & | result () const |
| Return access to result data.
|
|
◆ ISTLBackend_OVLP_Base()
template<class GFS , class C , template< class, class, class, int > class Preconditioner, template< class > class Solver>
Dune::PDELab::ISTLBackend_OVLP_Base< GFS, C, Preconditioner, Solver >::ISTLBackend_OVLP_Base |
( |
const GFS & |
gfs_, |
|
|
const C & |
c_, |
|
|
unsigned |
maxiter_ = 5000 , |
|
|
int |
steps_ = 5 , |
|
|
int |
verbose_ = 1 |
|
) |
| |
|
inline |
make a linear solver object
- Parameters
-
[in] | gfs_ | a grid function space |
[in] | c_ | a constraints object |
[in] | maxiter_ | maximum number of iterations to do |
[in] | steps_ | number of SSOR steps to apply as inner iteration |
[in] | verbose_ | print messages if true |
◆ apply()
template<class GFS , class C , template< class, class, class, int > class Preconditioner, template< class > class Solver>
template<class M , class V , class W >
void Dune::PDELab::ISTLBackend_OVLP_Base< GFS, C, Preconditioner, Solver >::apply |
( |
M & |
A, |
|
|
V & |
z, |
|
|
W & |
r, |
|
|
typename Dune::template FieldTraits< typename V::ElementType >::real_type |
reduction |
|
) |
| |
|
inline |
solve the given linear system
- Parameters
-
[in] | A | the given matrix |
[out] | z | the solution vector to be computed |
[in] | r | right hand side |
[in] | reduction | to be achieved |
◆ dot()
template<typename GFS >
template<typename X >
Dot product of two vectors. It is assumed that the vectors are consistent on the interior+border partition.
◆ norm()
template<typename GFS >
template<typename X >
Norm of a right-hand side vector. The vector must be consistent on the interior+border partition.
◆ parallelHelper() [1/2]
◆ parallelHelper() [2/2]
◆ result()
Return access to result data.
◆ res
The documentation for this class was generated from the following file: