1#ifndef SimTK_SIMMATRIX_SMALLMATRIX_MAT_H_
2#define SimTK_SIMMATRIX_SMALLMATRIX_MAT_H_
97template <
int M,
int N,
class ELT,
int CS,
int RS>
class Mat {
197 static int size() {
return M*N; }
200 static int nrow() {
return M; }
203 static int ncol() {
return N; }
257 typedef typename MulOp::Type
Mul;
262 typedef typename MulOpNonConforming::Type
MulNon;
267 typedef typename DvdOp::Type
Dvd;
272 typedef typename AddOp::Type
Add;
277 typedef typename SubOp::Type
Sub;
300 for (
int j=0;
j<N; ++
j)
307 for (
int j=0;
j<N; ++
j)
318 for (
int j = 0;
j < M; ++
j)
319 for (
int i =
j+1;
i < M; ++
i) {
320 (*this)(
i,
j) =
src.getEltLower(
i,
j);
321 (*this)(
j,
i) =
src.getEltUpper(
j,
i);
329 template <
int CSS,
int RSS>
331 for (
int j=0;
j<N; ++
j)
340 template <
int CSS,
int RSS>
342 for (
int j=0;
j<N; ++
j)
353 template <
class EE,
int CSS,
int RSS>
355 {
for (
int j=0;
j<N;++
j) (*
this)(
j) =
mm(
j);}
361 {
for (
int j=0;
j<N;++
j) (*
this)(
j) =
E(0);
diag()=e; }
368 {
for (
int j=0;
j<N;++
j) (*
this)(
j) =
E(0);
diag()=e; }
383 {
assert(M*N==3);d[rIx(0)]=
e0;d[rIx(1)]=
e1;d[rIx(2)]=
e2;}
385 {
assert(M*N==4);d[rIx(0)]=
e0;d[rIx(1)]=
e1;d[rIx(2)]=
e2;d[rIx(3)]=
e3;}
387 {
assert(M*N==5);d[rIx(0)]=
e0;d[rIx(1)]=
e1;d[rIx(2)]=
e2;d[rIx(3)]=
e3;d[rIx(4)]=
e4;}
390 {
assert(M*N==6);d[rIx(0)]=
e0;d[rIx(1)]=
e1;d[rIx(2)]=
e2;d[rIx(3)]=
e3;d[rIx(4)]=
e4;
394 {
assert(M*N==7);d[rIx(0)]=
e0;d[rIx(1)]=
e1;d[rIx(2)]=
e2;d[rIx(3)]=
e3;d[rIx(4)]=
e4;
395 d[rIx(5)]=
e5;d[rIx(6)]=
e6;}
398 {
assert(M*N==8);d[rIx(0)]=
e0;d[rIx(1)]=
e1;d[rIx(2)]=
e2;d[rIx(3)]=
e3;d[rIx(4)]=
e4;
399 d[rIx(5)]=
e5;d[rIx(6)]=
e6;d[rIx(7)]=
e7;}
402 {
assert(M*N==9);d[rIx(0)]=
e0;d[rIx(1)]=
e1;d[rIx(2)]=
e2;d[rIx(3)]=
e3;d[rIx(4)]=
e4;
403 d[rIx(5)]=
e5;d[rIx(6)]=
e6;d[rIx(7)]=
e7;d[rIx(8)]=
e8;}
406 {
assert(M*N==10);d[rIx(0)]=
e0;d[rIx(1)]=
e1;d[rIx(2)]=
e2;d[rIx(3)]=
e3;d[rIx(4)]=
e4;
407 d[rIx(5)]=
e5;d[rIx(6)]=
e6;d[rIx(7)]=
e7;d[rIx(8)]=
e8;d[rIx(9)]=
e9;}
411 {
assert(M*N==11);d[rIx(0)]=
e0;d[rIx(1)]=
e1;d[rIx(2)]=
e2;d[rIx(3)]=
e3;d[rIx(4)]=
e4;
412 d[rIx(5)]=
e5;d[rIx(6)]=
e6;d[rIx(7)]=
e7;d[rIx(8)]=
e8;d[rIx(9)]=
e9;d[rIx(10)]=
e10;}
416 {
assert(M*N==12);d[rIx(0)]=
e0;d[rIx(1)]=
e1;d[rIx(2)]=
e2;d[rIx(3)]=
e3;d[rIx(4)]=
e4;
417 d[rIx(5)]=
e5;d[rIx(6)]=
e6;d[rIx(7)]=
e7;d[rIx(8)]=
e8;d[rIx(9)]=
e9;d[rIx(10)]=
e10;
422 {
assert(M*N==13);d[rIx(0)]=
e0;d[rIx(1)]=
e1;d[rIx(2)]=
e2;d[rIx(3)]=
e3;d[rIx(4)]=
e4;
423 d[rIx(5)]=
e5;d[rIx(6)]=
e6;d[rIx(7)]=
e7;d[rIx(8)]=
e8;d[rIx(9)]=
e9;d[rIx(10)]=
e10;
424 d[rIx(11)]=
e11;d[rIx(12)]=
e12;}
428 {
assert(M*N==14);d[rIx(0)]=
e0;d[rIx(1)]=
e1;d[rIx(2)]=
e2;d[rIx(3)]=
e3;d[rIx(4)]=
e4;
429 d[rIx(5)]=
e5;d[rIx(6)]=
e6;d[rIx(7)]=
e7;d[rIx(8)]=
e8;d[rIx(9)]=
e9;d[rIx(10)]=
e10;
430 d[rIx(11)]=
e11;d[rIx(12)]=
e12;d[rIx(13)]=
e13;}
434 {
assert(M*N==15);d[rIx(0)]=
e0;d[rIx(1)]=
e1;d[rIx(2)]=
e2;d[rIx(3)]=
e3;d[rIx(4)]=
e4;
435 d[rIx(5)]=
e5;d[rIx(6)]=
e6;d[rIx(7)]=
e7;d[rIx(8)]=
e8;d[rIx(9)]=
e9;d[rIx(10)]=
e10;
436 d[rIx(11)]=
e11;d[rIx(12)]=
e12;d[rIx(13)]=
e13;d[rIx(14)]=
e14;}
441 {
assert(M*N==16);d[rIx(0)]=
e0;d[rIx(1)]=
e1;d[rIx(2)]=
e2;d[rIx(3)]=
e3;d[rIx(4)]=
e4;
442 d[rIx(5)]=
e5;d[rIx(6)]=
e6;d[rIx(7)]=
e7;d[rIx(8)]=
e8;d[rIx(9)]=
e9;d[rIx(10)]=
e10;
443 d[rIx(11)]=
e11;d[rIx(12)]=
e12;d[rIx(13)]=
e13;d[rIx(14)]=
e14;d[rIx(15)]=
e15;}
451 {
assert(M==3);(*this)[0]=
r0;(*this)[1]=
r1;(*this)[2]=
r2; }
454 {
assert(M==4);(*this)[0]=
r0;(*this)[1]=
r1;(*this)[2]=
r2;(*this)[3]=
r3; }
457 {
assert(M==5);(*this)[0]=
r0;(*this)[1]=
r1;(*this)[2]=
r2;
458 (*this)[3]=
r3;(*this)[4]=
r4; }
461 {
assert(M==6);(*this)[0]=
r0;(*this)[1]=
r1;(*this)[2]=
r2;
462 (*this)[3]=
r3;(*this)[4]=
r4;(*this)[5]=
r5; }
469 template <
class EE,
int SS>
471 {
assert(M==3);(*this)[0]=
r0;(*this)[1]=
r1;(*this)[2]=
r2; }
472 template <
class EE,
int SS>
475 {
assert(M==4);(*this)[0]=
r0;(*this)[1]=
r1;(*this)[2]=
r2;(*this)[3]=
r3; }
476 template <
class EE,
int SS>
479 {
assert(M==5);(*this)[0]=
r0;(*this)[1]=
r1;(*this)[2]=
r2;
480 (*this)[3]=
r3;(*this)[4]=
r4; }
481 template <
class EE,
int SS>
484 {
assert(M==6);(*this)[0]=
r0;(*this)[1]=
r1;(*this)[2]=
r2;
485 (*this)[3]=
r3;(*this)[4]=
r4;(*this)[5]=
r5; }
494 {
assert(N==3);(*this)(0)=
r0;(*this)(1)=
r1;(*this)(2)=
r2; }
497 {
assert(N==4);(*this)(0)=
r0;(*this)(1)=
r1;(*this)(2)=
r2;(*this)(3)=
r3; }
500 {
assert(N==5);(*this)(0)=
r0;(*this)(1)=
r1;(*this)(2)=
r2;
501 (*this)(3)=
r3;(*this)(4)=
r4; }
504 {
assert(N==6);(*this)(0)=
r0;(*this)(1)=
r1;(*this)(2)=
r2;
505 (*this)(3)=
r3;(*this)(4)=
r4;(*this)(5)=
r5; }
512 template <
class EE,
int SS>
514 {
assert(N==3);(*this)(0)=
r0;(*this)(1)=
r1;(*this)(2)=
r2; }
515 template <
class EE,
int SS>
518 {
assert(N==4);(*this)(0)=
r0;(*this)(1)=
r1;(*this)(2)=
r2;(*this)(3)=
r3; }
519 template <
class EE,
int SS>
522 {
assert(N==5);(*this)(0)=
r0;(*this)(1)=
r1;(*this)(2)=
r2;
523 (*this)(3)=
r3;(*this)(4)=
r4; }
524 template <
class EE,
int SS>
527 {
assert(N==6);(*this)(0)=
r0;(*this)(1)=
r1;(*this)(2)=
r2;
528 (*this)(3)=
r3;(*this)(4)=
r4;(*this)(5)=
r5; }
532 template <
class EE>
explicit Mat(
const EE* p)
533 {
assert(p);
for(
int i=0;
i<M;++
i) (*
this)[
i]=&p[
i*N]; }
539 for (
int j=0;
j<N; ++
j) (*
this)(
j) =
mm(
j);
544 assert(p);
for(
int i=0;
i<M;++
i) (*
this)[
i]=&p[
i*N];
549 template <
class EE,
int CSS,
int RSS>
Mat&
551 for (
int j=0;
j<N; ++
j) (*
this)(
j) +=
mm(
j);
554 template <
class EE,
int CSS,
int RSS>
Mat&
556 for (
int j=0;
j<N; ++
j) (*
this)(
j) -= -(
mm(
j));
560 template <
class EE,
int CSS,
int RSS>
Mat&
562 for (
int j=0;
j<N; ++
j) (*
this)(
j) -=
mm(
j);
565 template <
class EE,
int CSS,
int RSS>
Mat&
567 for (
int j=0;
j<N; ++
j) (*
this)(
j) += -(
mm(
j));
573 template <
class EE,
int CSS,
int RSS>
Mat&
576 for (
int j=0;
j<N; ++
j)
577 for (
int i=0;
i<M; ++
i)
586 template <
class E2,
int CS2,
int RS2>
590 for (
int j=0;
j<N;++
j) result(
j) = (*this)(
j) +
r(
j);
594 template <
class E2,
int CS2,
int RS2>
598 for (
int j=0;
j<N;++
j) result(
j) = (*this)(
j) -
r(
j);
602 template <
class E2,
int CS2,
int RS2>
609 template <
class E2,
int CS2,
int RS2>
613 for (
int j=0;
j<N;++
j)
619 template <
class E2,
int CS2,
int RS2>
623 for (
int j=0;
j<N;++
j)
630 template <
class E2,
int RS2>
634 return sy.conformingAdd(*
this);
637 template <
class E2,
int RS2>
641 return sy.conformingSubtractFromLeft(*
this);
644 template <
class E2,
int RS2>
648 return sy.conformingSubtract(*
this);
652 template <
int N2,
class E2,
int CS2,
int RS2>
656 for (
int j=0;
j<
N2;++
j)
657 for (
int i=0;
i<M;++
i)
658 result(
i,
j) = (*this)[
i].conformingMultiply(m(
j));
662 template <
int M2,
class E2,
int CS2,
int RS2>
669 template <
int M2,
class E2,
int CS2,
int RS2>
675 template <
int M2,
class E2,
int CS2,
int RS2>
713 for (
int j=0;
j<N; ++
j)
736 {
return *
reinterpret_cast<const TPosTrans*
>(
this); }
738 {
return *
reinterpret_cast<TPosTrans*
>(
this); }
757 return *
reinterpret_cast<const TImag*
>(p+
offs);
762 return *
reinterpret_cast<TImag*
>(p+
offs);
770 return *
reinterpret_cast<const TRow*
>(&d[
i*
RS]);
774 return *
reinterpret_cast<TRow*
>(&d[
i*
RS]);
779 return *
reinterpret_cast<const TCol*
>(&d[
j*
CS]);
783 return *
reinterpret_cast<TCol*
>(&d[
j*
CS]);
905 for (
int j=0;
j<N; ++
j)
910 for (
int j=0;
j<N; ++
j)
917 template <
int MM,
int NN>
struct SubMat {
921 template <
int MM,
int NN>
927 template <
int MM,
int NN>
933 template <
int MM,
int NN>
945 for (
int r=0,
nxt=0;
r<M-1; ++
r, ++
nxt) {
957 for (
int c=0,
nxt=0;
c<N-1; ++
c, ++
nxt) {
984 template <
class EE,
int SS>
995 template <
class EE,
int SS>
1009 template <
class ER,
int SR,
class EC,
int SC>
1026 template <
class EE,
int SS>
1043 template <
class EE,
int SS>
1062 template <
class ER,
int SR,
class EC,
int SC>
1093 for (
int j=0;
j<N; ++
j)
1103 for (
int j=0;
j<N; ++
j) {
1115 for (
int j=0;
j<N; ++
j)
1127 template <
class E2,
int CS2,
int RS2>
1129 for (
int j=0;
j < N; ++
j)
1138 template <
class E2,
int CS2,
int RS2>
1153 for (
int i=0;
i<M; ++
i)
1154 for (
int j=0;
j<N; ++
j) {
1175 if (M != N)
return false;
1176 for (
int j=0;
j<M; ++
j)
1177 for (
int i=
j;
i<M; ++
i)
1190 if (M != N)
return false;
1191 for (
int j=0;
j<M; ++
j)
1192 for (
int i=
j;
i<M; ++
i)
1201 for (
int j = 0;
j < N; ++
j)
1212 for (
int i = 0;
i < M; ++
i)
1220 std::stringstream
stream;
1236 int rIx(
int k)
const {
1237 const int row =
k / N;
1238 const int col =
k % N;
1248template <
int M,
int N,
class EL,
int CSL,
int RSL,
class ER,
int CSR,
int RSR>
inline
1252 ::AddOp::perform(l,r);
1255template <
int M,
int N,
class EL,
int CSL,
int RSL,
class ER,
int CSR,
int RSR>
inline
1259 ::SubOp::perform(l,r);
1263template <
int M,
int N,
class EL,
int CSL,
int RSL,
int P,
class ER,
int CSR,
int RSR>
inline
1267 ::MulOp::perform(l,r);
1272template <
int M,
int N,
class EL,
int CSL,
int RSL,
int MM,
int NN,
class ER,
int CSR,
int RSR>
inline
1276 ::MulOpNonConforming::perform(l,r);
1279template <
int M,
int N,
class EL,
int CSL,
int RSL,
class ER,
int CSR,
int RSR>
inline
1281 for (
int j=0; j<N; ++j)
1282 if (l(j) != r(j))
return false;
1285template <
int M,
int N,
class EL,
int CSL,
int RSL,
class ER,
int CSR,
int RSR>
inline
1298template <
int M,
int N,
class E,
int CS,
int RS>
inline
1302template <
int M,
int N,
class E,
int CS,
int RS>
inline
1306template <
int M,
int N,
class E,
int CS,
int RS>
inline
1310template <
int M,
int N,
class E,
int CS,
int RS>
inline
1315template <
int M,
int N,
class E,
int CS,
int RS>
inline
1318template <
int M,
int N,
class E,
int CS,
int RS>
inline
1325template <
int M,
int N,
class E,
int CS,
int RS,
class R>
inline
1329template <
int M,
int N,
class E,
int CS,
int RS,
class R>
inline
1334template <
int M,
int N,
class E,
int CS,
int RS,
class R>
inline
1337template <
int M,
int N,
class E,
int CS,
int RS,
class R>
inline
1342template <
int M,
int N,
class E,
int CS,
int RS,
class R>
inline
1345template <
int M,
int N,
class E,
int CS,
int RS,
class R>
inline
1357template <
int M,
int N,
class E,
int CS,
int RS>
inline
1362template <
int M,
int N,
class E,
int CS,
int RS>
inline
1363typename CNT<float>::template Result<Mat<M,N,E,CS,RS> >::Dvd
1365{
return l * r.
invert(); }
1367template <
int M,
int N,
class E,
int CS,
int RS>
inline
1372template <
int M,
int N,
class E,
int CS,
int RS>
inline
1373typename CNT<double>::template Result<Mat<M,N,E,CS,RS> >::Dvd
1375{
return l * r.
invert(); }
1378template <
int M,
int N,
class E,
int CS,
int RS>
inline
1383template <
int M,
int N,
class E,
int CS,
int RS>
inline
1384typename CNT<typename CNT<E>::Precision>::template Result<Mat<M,N,E,CS,RS> >::Dvd
1392template <
int M,
int N,
class E,
int CS,
int RS,
class R>
inline
1396template <
int M,
int N,
class E,
int CS,
int RS,
class R>
inline
1397typename CNT<std::complex<R> >::template Result<Mat<M,N,E,CS,RS> >::Dvd
1399 {
return CNT<std::complex<R> >::template Result<Mat<M,N,E,CS,RS> >::DvdOp::perform(l,r); }
1402template <
int M,
int N,
class E,
int CS,
int RS,
class R>
inline
1405template <
int M,
int N,
class E,
int CS,
int RS,
class R>
inline
1406typename CNT<std::complex<R> >::template Result<Mat<M,N,E,CS,RS> >::Dvd
1410template <
int M,
int N,
class E,
int CS,
int RS,
class R>
inline
1413template <
int M,
int N,
class E,
int CS,
int RS,
class R>
inline
1414typename CNT<R>::template Result<Mat<M,N,E,CS,RS> >::Dvd
1425template <
int M,
int N,
class E,
int CS,
int RS>
inline
1429template <
int M,
int N,
class E,
int CS,
int RS>
inline
1433template <
int M,
int N,
class E,
int CS,
int RS>
inline
1437template <
int M,
int N,
class E,
int CS,
int RS>
inline
1442template <
int M,
int N,
class E,
int CS,
int RS>
inline
1445template <
int M,
int N,
class E,
int CS,
int RS>
inline
1452template <
int M,
int N,
class E,
int CS,
int RS,
class R>
inline
1456template <
int M,
int N,
class E,
int CS,
int RS,
class R>
inline
1461template <
int M,
int N,
class E,
int CS,
int RS,
class R>
inline
1464template <
int M,
int N,
class E,
int CS,
int RS,
class R>
inline
1469template <
int M,
int N,
class E,
int CS,
int RS,
class R>
inline
1472template <
int M,
int N,
class E,
int CS,
int RS,
class R>
inline
1479template <
int M,
int N,
class E,
int CS,
int RS>
inline
1483template <
int M,
int N,
class E,
int CS,
int RS>
inline
1484typename CNT<float>::template Result<Mat<M,N,E,CS,RS> >::Sub
1488template <
int M,
int N,
class E,
int CS,
int RS>
inline
1492template <
int M,
int N,
class E,
int CS,
int RS>
inline
1493typename CNT<double>::template Result<Mat<M,N,E,CS,RS> >::Sub
1498template <
int M,
int N,
class E,
int CS,
int RS>
inline
1501template <
int M,
int N,
class E,
int CS,
int RS>
inline
1502typename CNT<typename CNT<E>::Precision>::template Result<Mat<M,N,E,CS,RS> >::Sub
1509template <
int M,
int N,
class E,
int CS,
int RS,
class R>
inline
1513template <
int M,
int N,
class E,
int CS,
int RS,
class R>
inline
1514typename CNT<std::complex<R> >::template Result<Mat<M,N,E,CS,RS> >::Sub
1516 {
return CNT<std::complex<R> >::template Result<Mat<M,N,E,CS,RS> >::SubOp::perform(l,r); }
1519template <
int M,
int N,
class E,
int CS,
int RS,
class R>
inline
1522template <
int M,
int N,
class E,
int CS,
int RS,
class R>
inline
1523typename CNT<std::complex<R> >::template Result<Mat<M,N,E,CS,RS> >::Sub
1527template <
int M,
int N,
class E,
int CS,
int RS,
class R>
inline
1530template <
int M,
int N,
class E,
int CS,
int RS,
class R>
inline
1531typename CNT<R>::template Result<Mat<M,N,E,CS,RS> >::Sub
1536template <
int M,
int N,
class E,
int CS,
int RS,
class CHAR,
class TRAITS>
inline
1537std::basic_ostream<CHAR,TRAITS>&
1538operator<<(std::basic_ostream<CHAR,TRAITS>& o,
const Mat<M,N,E,CS,RS>& m) {
1539 for (
int i=0;i<M;++i) {
1540 o << std::endl <<
"[";
1541 for (
int j=0;j<N;++j)
1542 o << (j>0?
",":
"") << m(i,j);
1545 if (M) o << std::endl;
1549template <
int M,
int N,
class E,
int CS,
int RS,
class CHAR,
class TRAITS>
inline
1550std::basic_istream<CHAR,TRAITS>&
#define SimTK_INDEXCHECK(ix, ub, where)
Definition ExceptionMacros.h:145
Mandatory first inclusion for any Simbody source or header file.
Specialized information about Composite Numerical Types which allows us to define appropriate templat...
Definition CompositeNumericalTypes.h:136
K::ULessScalar ULessScalar
Definition CompositeNumericalTypes.h:161
static double getDefaultTolerance()
Definition CompositeNumericalTypes.h:269
K::ScalarNormSq ScalarNormSq
Definition CompositeNumericalTypes.h:166
K::StdNumber StdNumber
Definition CompositeNumericalTypes.h:163
static TSqrt sqrt(const K &t)
Definition CompositeNumericalTypes.h:239
K::TSqHermT TSqHermT
Definition CompositeNumericalTypes.h:146
K::TSqrt TSqrt
Definition CompositeNumericalTypes.h:154
K::TInvert TInvert
Definition CompositeNumericalTypes.h:157
K::TNormalize TNormalize
Definition CompositeNumericalTypes.h:158
K::TWithoutNegator TWithoutNegator
Definition CompositeNumericalTypes.h:140
K::TReal TReal
Definition CompositeNumericalTypes.h:141
K::THerm THerm
Definition CompositeNumericalTypes.h:144
K::TPosTrans TPosTrans
Definition CompositeNumericalTypes.h:145
K::TNeg TNeg
Definition CompositeNumericalTypes.h:139
K::TStandard TStandard
Definition CompositeNumericalTypes.h:156
K::TComplex TComplex
Definition CompositeNumericalTypes.h:143
K::TSqTHerm TSqTHerm
Definition CompositeNumericalTypes.h:147
K::TImag TImag
Definition CompositeNumericalTypes.h:142
K::Precision Precision
Definition CompositeNumericalTypes.h:164
K::Scalar Scalar
Definition CompositeNumericalTypes.h:160
K::TAbs TAbs
Definition CompositeNumericalTypes.h:155
K::Number Number
Definition CompositeNumericalTypes.h:162
This class represents a small matrix whose size is known at compile time, containing elements of any ...
Definition Mat.h:97
Mat()
Default construction initializes to NaN when debugging but is left uninitialized otherwise to ensure ...
Definition Mat.h:287
CNT< E >::TImag EImag
Definition Mat.h:103
SubMat< MM, NN >::Type & updSubMat(int i, int j)
Definition Mat.h:928
Mat< M, N, E2, CS2, RS2 >::template Result< Mat >::Sub conformingSubtractFromLeft(const Mat< M, N, E2, CS2, RS2 > &l) const
Definition Mat.h:604
Mat(const SymMat< M, ELT > &src)
Explicit construction of a Mat from a SymMat (symmetric/Hermitian matrix).
Definition Mat.h:316
Mat(const E &e0, const E &e1, const E &e2, const E &e3, const E &e4, const E &e5, const E &e6, const E &e7, const E &e8, const E &e9, const E &e10, const E &e11, const E &e12, const E &e13, const E &e14)
Definition Mat.h:431
Mat(const E &e0, const E &e1, const E &e2, const E &e3, const E &e4, const E &e5, const E &e6, const E &e7, const E &e8, const E &e9)
Definition Mat.h:404
const E & elt(int i, int j) const
Definition Mat.h:786
void setSubMat(int i, int j, const typename SubMat< MM, NN >::Type &value)
Definition Mat.h:934
Result< SymMat< M, E2, RS2 > >::Sub conformingSubtract(const SymMat< M, E2, RS2 > &sy) const
Definition Mat.h:639
TAppendRowCol appendRowCol(const Row< N+1, ER, SR > &row, const Vec< M+1, EC, SC > &col) const
Return a matrix one row and one column larger than this one by adding a row to the bottom and a colum...
Definition Mat.h:1010
Result< Mat< N, N2, E2, CS2, RS2 > >::Mul conformingMultiply(const Mat< N, N2, E2, CS2, RS2 > &m) const
Definition Mat.h:654
Mat< M, N, typename CNT< EE >::template Result< E >::Dvd > scalarDivideFromLeft(const EE &e) const
Definition Mat.h:840
EltResult< E2 >::Dvd elementwiseDivide(const Mat< M, N, E2, CS2, RS2 > &r) const
Definition Mat.h:621
Mat & scalarTimesEqFromLeft(const EE &ee)
Definition Mat.h:896
TWithoutNegator & updCastAwayNegatorIfAny()
Definition Mat.h:766
Mat< M-1, N-1, E, M-1, 1 > TDropRowCol
Definition Mat.h:182
Mat< M, N+1, E, M, 1 > TAppendCol
Definition Mat.h:184
Mat(const TCol &r0, const TCol &r1, const TCol &r2, const TCol &r3)
Definition Mat.h:495
static int nrow()
Return the number of rows in this Mat, echoing the value supplied for the template parameter M.
Definition Mat.h:200
const TReal & real() const
Definition Mat.h:744
Mat(const TCol &r0)
Definition Mat.h:489
Mat(const E &e0, const E &e1, const E &e2, const E &e3, const E &e4, const E &e5, const E &e6, const E &e7)
Definition Mat.h:396
const TCol & operator()(int j) const
Definition Mat.h:683
CNT< E >::TComplex EComplex
Definition Mat.h:104
CNT< E >::TStandard EStandard
Definition Mat.h:112
EStdNumber StdNumber
Definition Mat.h:190
Mat< M, N, ENeg, CS, RS > TNeg
Definition Mat.h:151
void setToNaN()
Definition Mat.h:904
E & elt(int i, int j)
Definition Mat.h:791
TInvert invert() const
Definition SmallMatrixMixed.h:1004
THerm TransposeType
Definition Mat.h:194
Mat(const TRow &r0, const TRow &r1, const TRow &r2, const TRow &r3, const TRow &r4)
Definition Mat.h:455
Mat & scalarDivideEqFromLeft(const EE &ee)
Definition Mat.h:901
static double getDefaultTolerance()
For approximate comparisons, the default tolerance to use for a matrix is its shortest dimension time...
Definition Mat.h:1123
TRow & operator[](int i)
Definition Mat.h:682
Mat(const Row< N, EE, SS > &r0, const Row< N, EE, SS > &r1, const Row< N, EE, SS > &r2, const Row< N, EE, SS > &r3, const Row< N, EE, SS > &r4)
Definition Mat.h:477
Mat< M, N, EAbs, M, 1 > TAbs
Definition Mat.h:169
TRow sum() const
This is an alternate name for colSum(); behaves like the Matlab function of the same name.
Definition Mat.h:1207
bool isNumericallyEqual(const Mat< M, N, E2, CS2, RS2 > &m, double tol) const
Test whether this matrix is numerically equal to some other matrix with the same shape,...
Definition Mat.h:1128
CNT< E >::TWithoutNegator EWithoutNegator
Definition Mat.h:101
CNT< E >::TSqHermT ESqHermT
Definition Mat.h:107
Mat< M, N, typename CNT< EE >::template Result< E >::Mul > scalarMultiplyFromLeft(const EE &e) const
Definition Mat.h:825
Mat< M, N, EStandard, M, 1 > TStandard
Definition Mat.h:170
Result< Mat< M2, N, E2, CS2, RS2 > >::Dvd conformingDivide(const Mat< M2, N, E2, CS2, RS2 > &m) const
Definition Mat.h:671
Mat(const E &e0, const E &e1, const E &e2, const E &e3)
Definition Mat.h:384
TDropRow dropRow(int i) const
Return a matrix one row smaller than this one by dropping row i.
Definition Mat.h:942
Mat(const E &e0, const E &e1, const E &e2, const E &e3, const E &e4, const E &e5, const E &e6)
Definition Mat.h:392
CNT< E >::Number ENumber
Definition Mat.h:118
Mat(const Row< N, EE, SS > &r0, const Row< N, EE, SS > &r1)
Definition Mat.h:467
const THerm & transpose() const
Definition Mat.h:732
ScalarNormSq normSqr() const
Definition Mat.h:690
SymMat< N, ESqHermT > TSqHermT
Definition Mat.h:174
Mat(const Row< N, EE, SS > &r0)
Definition Mat.h:465
Mat & scalarMinusEqFromLeft(const EE &ee)
Definition Mat.h:891
EScalar Scalar
Definition Mat.h:187
Mat(const Vec< M, EE, SS > &r0, const Vec< M, EE, SS > &r1, const Vec< M, EE, SS > &r2, const Vec< M, EE, SS > &r3)
Definition Mat.h:516
TStandard standardize() const
Definition Mat.h:234
EScalarNormSq ScalarNormSq
Definition Mat.h:192
TReal & real()
Definition Mat.h:745
static const Mat & getAs(const ELT *p)
Definition Mat.h:1081
EStandard trace() const
Definition Mat.h:809
CNT< E >::TAbs EAbs
Definition Mat.h:111
ScalarNormSq scalarNormSqr() const
Scalar norm square is the sum of squares of all the scalars that comprise the value of this Mat.
Definition Mat.h:210
CNT< ScalarNormSq >::TSqrt norm() const
Definition Mat.h:692
Mat< M, N, typename CNT< E >::template Result< EE >::Sub > scalarSubtract(const EE &e) const
Definition Mat.h:856
Mat & operator-=(const Mat< M, N, negator< EE >, CSS, RSS > &mm)
Definition Mat.h:566
Mat(const TCol &r0, const TCol &r1, const TCol &r2, const TCol &r3, const TCol &r4, const TCol &r5)
Definition Mat.h:502
Mat< M, N, E, M, 1 > TPacked
Definition Mat.h:179
Vec< M, E, RS > TCol
Definition Mat.h:163
EltResult< E2 >::Mul elementwiseMultiply(const Mat< M, N, E2, CS2, RS2 > &r) const
Definition Mat.h:611
const TRow & operator[](int i) const
Definition Mat.h:681
Mat(const Vec< M, EE, SS > &r0)
Definition Mat.h:508
TAbs abs() const
Elementwise absolute value; that is, the return value has the same dimensions as this Mat but with ea...
Definition Mat.h:228
TPosTrans & updPositionalTranspose()
Definition Mat.h:737
const E & operator()(int i, int j) const
Definition Mat.h:686
CNT< E >::ScalarNormSq EScalarNormSq
Definition Mat.h:121
Mat< N, M, E, RS, CS > TPosTrans
Definition Mat.h:160
static int ncol()
Return the number of columns in this Mat, echoing the value supplied for the template parameter N.
Definition Mat.h:203
Mat(const E &e0, const E &e1, const E &e2, const E &e3, const E &e4, const E &e5, const E &e6, const E &e7, const E &e8)
Definition Mat.h:400
Mat< M2, N, E2, CS2, RS2 >::template Result< Mat >::Dvd conformingDivideFromLeft(const Mat< M2, N, E2, CS2, RS2 > &m) const
Definition Mat.h:677
Mat(const Row< N, EE, SS > &r0, const Row< N, EE, SS > &r1, const Row< N, EE, SS > &r2)
Definition Mat.h:470
bool isExactlySymmetric() const
A Matrix is symmetric (actually Hermitian) if it is square and each element (i,j) is the Hermitian (c...
Definition Mat.h:1189
CNT< E >::Precision EPrecision
Definition Mat.h:120
Mat< M, N, typename CNT< EE >::template Result< E >::Sub > scalarSubtractFromLeft(const EE &e) const
Definition Mat.h:863
CNT< E >::TPosTrans EPosTrans
Definition Mat.h:106
Mat & scalarPlusEq(const EE &ee)
Definition Mat.h:885
CNT< E >::TNormalize ENormalize
Definition Mat.h:114
const TPosTrans & positionalTranspose() const
Definition Mat.h:735
SymMat< M, ESqTHerm > TSqTHerm
Definition Mat.h:175
Mat & scalarDivideEq(const EE &ee)
Definition Mat.h:899
Row< N, E, CS > TRow
Definition Mat.h:162
Mat< M, N, E, CS, RS > T
Definition Mat.h:150
Mat(const TRow &r0, const TRow &r1, const TRow &r2)
Definition Mat.h:450
Mat< M, N, ENormalize, M, 1 > TNormalize
Definition Mat.h:172
Mat & operator+=(const Mat< M, N, EE, CSS, RSS > &mm)
Definition Mat.h:550
Mat(const TCol &r0, const TCol &r1, const TCol &r2, const TCol &r3, const TCol &r4)
Definition Mat.h:498
const TRow & row(int i) const
Definition Mat.h:768
Mat(const E &e0, const E &e1)
Definition Mat.h:380
Mat(const E &e0, const E &e1, const E &e2, const E &e3, const E &e4, const E &e5)
Definition Mat.h:388
TRow colSum() const
Returns a row vector (Row) containing the column sums of this matrix.
Definition Mat.h:1199
TCol & col(int j)
Definition Mat.h:781
Mat(const Mat &src)
Copy constructor copies only the elements that are present and does not touch any unused memory space...
Definition Mat.h:299
Mat(const TRow &r0, const TRow &r1, const TRow &r2, const TRow &r3, const TRow &r4, const TRow &r5)
Definition Mat.h:459
Mat & scalarEq(const EE &ee)
Definition Mat.h:880
Result< Mat< M, N, E2, CS2, RS2 > >::Add conformingAdd(const Mat< M, N, E2, CS2, RS2 > &r) const
Definition Mat.h:588
TRow & row(int i)
Definition Mat.h:772
TNeg & updNegate()
Definition Mat.h:730
CNT< E >::TSqrt ESqrt
Definition Mat.h:110
Mat< M, N, typename CNT< E >::template Result< EE >::Mul > scalarMultiply(const EE &e) const
Definition Mat.h:819
Mat & operator*=(const Mat< N, N, EE, CSS, RSS > &mm)
Definition Mat.h:574
ENumber Number
Definition Mat.h:189
Mat(const E &e0, const E &e1, const E &e2, const E &e3, const E &e4, const E &e5, const E &e6, const E &e7, const E &e8, const E &e9, const E &e10, const E &e11, const E &e12, const E &e13, const E &e14, const E &e15)
Definition Mat.h:437
TNormalize normalize() const
Definition Mat.h:707
static int size()
Return the total number of elements M*N contained in this Mat.
Definition Mat.h:197
TAppendCol insertCol(int j, const Vec< M, EE, SS > &col) const
Return a matrix one column larger than this one by inserting a column before column j.
Definition Mat.h:1044
Mat & operator=(const Mat< M, N, EE, CSS, RSS > &mm)
Definition Mat.h:538
Mat(const Mat< M, N, E, CSS, RSS > &src)
This provides an implicit conversion from a Mat of the same dimensions and element type but with diff...
Definition Mat.h:330
CNT< E >::TInvert EInvert
Definition Mat.h:113
const TNeg & negate() const
Definition Mat.h:729
void set(int i, int j, const ELT &value)
Variant of indexing operator that's scripting friendly to set entry (i, j)
Definition Mat.h:1227
E & operator()(int i, int j)
Definition Mat.h:687
Mat & operator-=(const EE &e)
Definition Mat.h:874
Mat< M+1, N, E, M+1, 1 > TAppendRow
Definition Mat.h:183
CNT< E >::Scalar EScalar
Definition Mat.h:116
bool isFinite() const
Return true if no element contains an Infinity or a NaN.
Definition Mat.h:1114
Vec< MinDim, E, RS+CS > TDiag
Definition Mat.h:164
Mat< M2, M, E2, CS2, RS2 >::template Result< Mat >::Mul conformingMultiplyFromLeft(const Mat< M2, M, E2, CS2, RS2 > &m) const
Definition Mat.h:664
TSqrt sqrt() const
Elementwise square root; that is, the return value has the same dimensions as this Mat but with each ...
Definition Mat.h:219
CNT< E >::TReal EReal
Definition Mat.h:102
TDiag & diag()
This non-const version of diag() is an alternate name for updDiag() available for historical reasons.
Definition Mat.h:807
bool isNumericallyEqual(const ELT &e, double tol=getDefaultTolerance()) const
Test whether this is numerically a "scalar" matrix, meaning that it is a diagonal matrix in which eac...
Definition Mat.h:1150
@ NPackedElements
Definition Mat.h:132
@ ImagOffset
Definition Mat.h:135
@ ArgDepth
Definition Mat.h:138
@ NCols
Definition Mat.h:127
@ RowSpacing
Definition Mat.h:130
@ RealStrideFactor
Definition Mat.h:136
@ NActualElements
Definition Mat.h:133
@ IsPrecision
Definition Mat.h:145
@ IsScalar
Definition Mat.h:141
@ IsNumber
Definition Mat.h:143
@ ColSpacing
Definition Mat.h:131
@ SignInterpretation
Definition Mat.h:146
@ IsStdNumber
Definition Mat.h:144
@ NActualScalars
Definition Mat.h:134
@ NRows
Definition Mat.h:126
@ MinDim
Definition Mat.h:128
@ IsULessScalar
Definition Mat.h:142
Result< SymMat< M, E2, RS2 > >::Add conformingAdd(const SymMat< M, E2, RS2 > &sy) const
Definition Mat.h:632
const SubMat< MM, NN >::Type & getSubMat(int i, int j) const
Definition Mat.h:922
TNeg & operator-()
Definition Mat.h:725
Mat(const EE *p)
Definition Mat.h:532
static Mat & updAs(ELT *p)
Definition Mat.h:1082
TAppendRowCol insertRowCol(int i, int j, const Row< N+1, ER, SR > &row, const Vec< M+1, EC, SC > &col) const
Return a matrix one row and one column larger than this one by inserting a row before row i and a col...
Definition Mat.h:1063
TAppendRow appendRow(const Row< N, EE, SS > &row) const
Return a matrix one row larger than this one by adding a row to the end.
Definition Mat.h:985
static Mat< M, N, ELT, M, 1 > getNaN()
Definition Mat.h:1085
Mat< M-1, N, E, M-1, 1 > TDropRow
Definition Mat.h:180
Mat(const E &e0, const E &e1, const E &e2, const E &e3, const E &e4, const E &e5, const E &e6, const E &e7, const E &e8, const E &e9, const E &e10, const E &e11, const E &e12)
Definition Mat.h:419
THerm & updTranspose()
Definition Mat.h:733
Mat(const E &e)
Explicit construction from a single element e of this Mat's element type E sets all the main diagonal...
Definition Mat.h:360
const ELT & get(int i, int j) const
Variant of indexing operator that's scripting friendly to get entry (i, j)
Definition Mat.h:1225
const TDiag & diag() const
Select main diagonal (of largest leading square if rectangular) and return it as a read-only view (as...
Definition Mat.h:800
CNT< E >::TNeg ENeg
Definition Mat.h:100
Mat(int i)
Explicit construction from an int value means we convert the int into an object of this Mat's element...
Definition Mat.h:376
Mat< N, M, EInvert, N, 1 > TInvert
Definition Mat.h:171
CNT< E >::THerm EHerm
Definition Mat.h:105
Mat(const Row< N, EE, SS > &r0, const Row< N, EE, SS > &r1, const Row< N, EE, SS > &r2, const Row< N, EE, SS > &r3)
Definition Mat.h:473
const TCol & col(int j) const
Definition Mat.h:777
std::string toString() const
toString() returns a string representation of the Mat.
Definition Mat.h:1219
bool isNaN() const
Return true if any element of this Mat contains a NaN anywhere.
Definition Mat.h:1092
bool isNumericallySymmetric(double tol=getDefaultTolerance()) const
A Matrix is symmetric (actually Hermitian) if it is square and each element (i,j) is the Hermitian tr...
Definition Mat.h:1174
TCol rowSum() const
Returns a column vector (Vec) containing the row sums of this matrix.
Definition Mat.h:1210
TAppendCol appendCol(const Vec< M, EE, SS > &col) const
Return a matrix one column larger than this one by adding a column to the end.
Definition Mat.h:996
Mat(const E &e0, const E &e1, const E &e2, const E &e3, const E &e4, const E &e5, const E &e6, const E &e7, const E &e8, const E &e9, const E &e10)
Definition Mat.h:408
EULessScalar ULessScalar
Definition Mat.h:188
Mat & operator+=(const EE &e)
Definition Mat.h:873
bool isInf() const
Return true if any element of this Mat contains a +Inf or -Inf somewhere but no element contains a Na...
Definition Mat.h:1101
Mat< M, N-1, E, M, 1 > TDropCol
Definition Mat.h:181
Mat & operator*=(const EE &e)
Definition Mat.h:875
Mat< M, N, EReal, CS *CNT< E >::RealStrideFactor, RS *CNT< E >::RealStrideFactor > TReal
Definition Mat.h:155
Mat< M, N, ESqrt, M, 1 > TSqrt
Definition Mat.h:168
Mat(const E &e0, const E &e1, const E &e2, const E &e3, const E &e4, const E &e5, const E &e6, const E &e7, const E &e8, const E &e9, const E &e10, const E &e11, const E &e12, const E &e13)
Definition Mat.h:425
SymMat< M, E2, RS2 >::template Result< Mat >::Sub conformingSubtractFromLeft(const SymMat< M, E2, RS2 > &sy) const
Definition Mat.h:646
const THerm & operator~() const
Definition Mat.h:726
Mat & operator/=(const EE &e)
Definition Mat.h:876
TDropCol dropCol(int j) const
Return a matrix one column smaller than this one by dropping column j.
Definition Mat.h:954
TAppendRow insertRow(int i, const Row< N, EE, SS > &row) const
Return a matrix one row larger than this one by inserting a row before row i.
Definition Mat.h:1027
const TWithoutNegator & castAwayNegatorIfAny() const
Definition Mat.h:765
Mat< M+1, N+1, E, M+1, 1 > TAppendRowCol
Definition Mat.h:185
Mat< M, N, EComplex, CS, RS > TComplex
Definition Mat.h:158
CNT< E >::ULessScalar EULessScalar
Definition Mat.h:117
TDiag & updDiag()
Select main diagonal (of largest leading square if rectangular) and return it as a writable view (as ...
Definition Mat.h:804
Mat(const TCol &r0, const TCol &r1, const TCol &r2)
Definition Mat.h:493
Result< Mat< M, N, E2, CS2, RS2 > >::Sub conformingSubtract(const Mat< M, N, E2, CS2, RS2 > &r) const
Definition Mat.h:596
Mat(const E &e0, const E &e1, const E &e2, const E &e3, const E &e4)
Definition Mat.h:386
const Mat & operator+() const
Definition Mat.h:723
Mat(const Vec< M, EE, SS > &r0, const Vec< M, EE, SS > &r1, const Vec< M, EE, SS > &r2, const Vec< M, EE, SS > &r3, const Vec< M, EE, SS > &r4)
Definition Mat.h:520
Mat(const Mat< M, N, EE, CSS, RSS > &mm)
Explicit construction of a Mat from a source Mat of the same dimensions and an assignment-compatible ...
Definition Mat.h:354
Mat(const TRow &r0)
Definition Mat.h:446
Mat & operator-=(const Mat< M, N, EE, CSS, RSS > &mm)
Definition Mat.h:561
Mat(const TRow &r0, const TRow &r1)
Definition Mat.h:448
Mat(const Mat< M, N, ENeg, CSS, RSS > &src)
This provides an implicit conversion from a Mat of the same dimensions and negated element type,...
Definition Mat.h:341
CNT< E >::StdNumber EStdNumber
Definition Mat.h:119
Mat(const ENeg &e)
Explicit construction from a single element e whose type is negator<E> (abbreviated ENeg here) where ...
Definition Mat.h:367
Mat< M, N, EImag, CS *CNT< E >::RealStrideFactor, RS *CNT< E >::RealStrideFactor > TImag
Definition Mat.h:157
Mat(const TCol &r0, const TCol &r1)
Definition Mat.h:491
TImag & imag()
Definition Mat.h:759
const TImag & imag() const
Definition Mat.h:754
Mat & scalarTimesEq(const EE &ee)
Definition Mat.h:894
Mat(const Vec< M, EE, SS > &r0, const Vec< M, EE, SS > &r1, const Vec< M, EE, SS > &r2, const Vec< M, EE, SS > &r3, const Vec< M, EE, SS > &r4, const Vec< M, EE, SS > &r5)
Definition Mat.h:525
Mat & scalarMinusEq(const EE &ee)
Definition Mat.h:888
Mat< M, N, EWithoutNegator, CS, RS > TWithoutNegator
Definition Mat.h:152
Mat & operator=(const Mat &src)
Copy assignment copies only the elements that are present and does not touch any unused memory space ...
Definition Mat.h:306
Mat & operator+=(const Mat< M, N, negator< EE >, CSS, RSS > &mm)
Definition Mat.h:555
void setToZero()
Definition Mat.h:909
Mat(const Vec< M, EE, SS > &r0, const Vec< M, EE, SS > &r1)
Definition Mat.h:510
Mat< M, N, typename CNT< E >::template Result< EE >::Add > scalarAdd(const EE &e) const
Definition Mat.h:848
Mat< N, M, EHerm, RS, CS > THerm
Definition Mat.h:159
Mat(const Vec< M, EE, SS > &r0, const Vec< M, EE, SS > &r1, const Vec< M, EE, SS > &r2)
Definition Mat.h:513
EPrecision Precision
Definition Mat.h:191
E TElement
Definition Mat.h:161
TCol & operator()(int j)
Definition Mat.h:684
TDropRowCol dropRowCol(int i, int j) const
Return a matrix one row and one column smaller than this one by dropping row i and column j.
Definition Mat.h:967
Mat(const E &e0, const E &e1, const E &e2)
Definition Mat.h:382
Mat & operator=(const EE *p)
Definition Mat.h:543
const TNeg & operator-() const
Definition Mat.h:724
Mat< M, N, typename CNT< E >::template Result< EE >::Dvd > scalarDivide(const EE &e) const
Definition Mat.h:834
Mat(const E &e0, const E &e1, const E &e2, const E &e3, const E &e4, const E &e5, const E &e6, const E &e7, const E &e8, const E &e9, const E &e10, const E &e11)
Definition Mat.h:413
Mat(const TRow &r0, const TRow &r1, const TRow &r2, const TRow &r3)
Definition Mat.h:452
THerm & operator~()
Definition Mat.h:727
Mat(const Row< N, EE, SS > &r0, const Row< N, EE, SS > &r1, const Row< N, EE, SS > &r2, const Row< N, EE, SS > &r3, const Row< N, EE, SS > &r4, const Row< N, EE, SS > &r5)
Definition Mat.h:482
CNT< E >::TSqTHerm ESqTHerm
Definition Mat.h:108
bool isNumericallyEqual(const Mat< M, N, E2, CS2, RS2 > &m) const
Test whether this matrix is numerically equal to some other matrix with the same shape,...
Definition Mat.h:1139
This is a fixed-length row vector designed for no-overhead inline computation.
Definition Row.h:132
EStandard sum() const
Definition Row.h:254
This is a small, fixed-size symmetric or Hermitian matrix designed for no-overhead inline computation...
Definition SymMat.h:87
This is a fixed-length column vector designed for no-overhead inline computation.
Definition Vec.h:184
Vec & scalarMinusEq(const EE &ee)
Definition Vec.h:787
Vec & scalarPlusEq(const EE &ee)
Definition Vec.h:785
Vec< M, typename CNT< E >::template Result< EE >::Add > scalarAdd(const EE &e) const
Definition Vec.h:752
Vec & scalarEq(const EE &ee)
Definition Vec.h:783
EStandard sum() const
Sum just adds up all the elements into a single return element that is the same type as this Vec's el...
Definition Vec.h:366
SimTK::conjugate<R> should be instantiated only for float, double.
Definition conjugate.h:178
negator<N>, where N is a number type (real, complex, conjugate), is represented in memory identically...
Definition negator.h:75
NTraits< N >::StdNumber StdNumber
Definition negator.h:107
This is the top-level SimTK namespace into which all SimTK names are placed to avoid collision with o...
Definition Assembler.h:37
Matrix_< E > operator*(const MatrixBase< E > &l, const typename CNT< E >::StdNumber &r)
Definition BigMatrix.h:605
Matrix_< E > operator/(const MatrixBase< E > &l, const typename CNT< E >::StdNumber &r)
Definition BigMatrix.h:613
std::basic_istream< CHAR, TRAITS > & operator>>(std::basic_istream< CHAR, TRAITS > &is, conjugate< R > &c)
Definition conjugate.h:505
@ MAX_RESOLVED_DEPTH
Definition CompositeNumericalTypes.h:120
Matrix_< typename CNT< E1 >::template Result< E2 >::Add > operator+(const MatrixBase< E1 > &l, const MatrixBase< E2 > &r)
Definition BigMatrix.h:568
std::ostream & operator<<(std::ostream &o, const ContactForce &f)
Definition CompliantContactSubsystem.h:387
Matrix_< typename CNT< E1 >::template Result< E2 >::Sub > operator-(const MatrixBase< E1 > &l, const MatrixBase< E2 > &r)
Definition BigMatrix.h:584
bool operator==(const PhiMatrix &p1, const PhiMatrix &p2)
Definition SpatialAlgebra.h:791
bool operator!=(const L &left, const R &right)
Definition SimTKcommon/include/SimTKcommon/internal/common.h:641
Mat< M, N, typename CNT< E >::template Result< P >::Add, M, 1 > Add
Definition Mat.h:247
Mat< M, N, typename CNT< E >::template Result< P >::Sub, M, 1 > Sub
Definition Mat.h:248
Mat< M, N, typename CNT< E >::template Result< P >::Mul, M, 1 > Mul
Definition Mat.h:245
Mat< M, N, typename CNT< E >::template Result< P >::Dvd, M, 1 > Dvd
Definition Mat.h:246
MulCNTs< M, N, ArgDepth, Mat, ColSpacing, RowSpacing, CNT< P >::NRows, CNT< P >::NCols, CNT< P >::ArgDepth, P, CNT< P >::ColSpacing, CNT< P >::RowSpacing > MulOp
Definition Mat.h:256
DvdOp::Type Dvd
Definition Mat.h:267
MulOpNonConforming::Type MulNon
Definition Mat.h:262
SubCNTs< M, N, ArgDepth, Mat, ColSpacing, RowSpacing, CNT< P >::NRows, CNT< P >::NCols, CNT< P >::ArgDepth, P, CNT< P >::ColSpacing, CNT< P >::RowSpacing > SubOp
Definition Mat.h:276
MulOp::Type Mul
Definition Mat.h:257
MulCNTsNonConforming< M, N, ArgDepth, Mat, ColSpacing, RowSpacing, CNT< P >::NRows, CNT< P >::NCols, CNT< P >::ArgDepth, P, CNT< P >::ColSpacing, CNT< P >::RowSpacing > MulOpNonConforming
Definition Mat.h:261
SubOp::Type Sub
Definition Mat.h:277
AddOp::Type Add
Definition Mat.h:272
DvdCNTs< M, N, ArgDepth, Mat, ColSpacing, RowSpacing, CNT< P >::NRows, CNT< P >::NCols, CNT< P >::ArgDepth, P, CNT< P >::ColSpacing, CNT< P >::RowSpacing > DvdOp
Definition Mat.h:266
AddCNTs< M, N, ArgDepth, Mat, ColSpacing, RowSpacing, CNT< P >::NRows, CNT< P >::NCols, CNT< P >::ArgDepth, P, CNT< P >::ColSpacing, CNT< P >::RowSpacing > AddOp
Definition Mat.h:271
Mat< MM, NN, ELT, CS, RS > Type
Definition Mat.h:918
Mat< M, N, P > Type
Definition Mat.h:282